四极核磁共振晶体学引导的晶体结构预测(QNMRX-CSP)

IF 2.6 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
CrystEngComm Pub Date : 2024-07-22 DOI:10.1039/D3CE01306E
Austin A. Peach, Carl H. Fleischer, Kirill Levin, Sean T. Holmes, Jazmine E. Sanchez and Robert W. Schurko
{"title":"四极核磁共振晶体学引导的晶体结构预测(QNMRX-CSP)","authors":"Austin A. Peach, Carl H. Fleischer, Kirill Levin, Sean T. Holmes, Jazmine E. Sanchez and Robert W. Schurko","doi":"10.1039/D3CE01306E","DOIUrl":null,"url":null,"abstract":"<p >We describe a new quadrupolar NMR crystallography guided crystal structure prediction (QNMRX-CSP) protocol for the prediction and refinement of crystal structures, including its design, benchmarking, and application to seven organic HCl salts. Five HCl salts with a limited number of low-energy conformations were chosen as model systems for benchmarking: betaine HCl, glycine HCl, <small>D</small>-alanine HCl, guanidine HCl, and aminoguanidine HCl; two were chosen for blind tests: <em>N</em>,<em>N</em>′-dimethylglycine HCl and metformin HCl. The QNMRX-CSP protocol uses experimental <small><sup>35</sup></small>Cl solid-state NMR (SSNMR) spectra and X-ray diffraction (XRD) data in tandem with Monte Carlo simulated annealing and dispersion-corrected plane-wave density functional theory (DFT-D2*) calculations. The protocol comprises three modules: (i) the assignment of motion groups, (ii) a Monte Carlo simulated annealing algorithm for generating tens of thousands of candidate structures, and (iii) DFT-D2* geometry optimizations of structural models and concomitant computation of <small><sup>35</sup></small>Cl EFG tensors. Key benchmarked metrics are used for retaining the best candidate structures, including unit cell parameters, static lattice energies, and EFG distances (<em>Γ</em><small><sub>EFG</sub></small>). The protocol is shown to generate structural models that are excellent matches with experimental crystal structures that have been DFT-D2* geometry optimized, as validated by crystallographic <em>R</em>-factors (<em>R</em>) and root-mean squared distances (RMSDs) of atomic positions that are well below 10% and 0.2 Å, respectively. Finally, consideration is given to the use of the QNMRX-CSP protocol as a standalone technique or in concert with other NMRX methods and Rietveld refinements, and possible applications employing other quadrupolar nuclei (<em>i.e.</em>, <small><sup>14</sup></small>N and <small><sup>17</sup></small>O).</p>","PeriodicalId":70,"journal":{"name":"CrystEngComm","volume":" 35","pages":" 4782-4803"},"PeriodicalIF":2.6000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ce/d3ce01306e?page=search","citationCount":"0","resultStr":"{\"title\":\"Quadrupolar NMR crystallography guided crystal structure prediction (QNMRX-CSP)†\",\"authors\":\"Austin A. Peach, Carl H. Fleischer, Kirill Levin, Sean T. Holmes, Jazmine E. Sanchez and Robert W. Schurko\",\"doi\":\"10.1039/D3CE01306E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >We describe a new quadrupolar NMR crystallography guided crystal structure prediction (QNMRX-CSP) protocol for the prediction and refinement of crystal structures, including its design, benchmarking, and application to seven organic HCl salts. Five HCl salts with a limited number of low-energy conformations were chosen as model systems for benchmarking: betaine HCl, glycine HCl, <small>D</small>-alanine HCl, guanidine HCl, and aminoguanidine HCl; two were chosen for blind tests: <em>N</em>,<em>N</em>′-dimethylglycine HCl and metformin HCl. The QNMRX-CSP protocol uses experimental <small><sup>35</sup></small>Cl solid-state NMR (SSNMR) spectra and X-ray diffraction (XRD) data in tandem with Monte Carlo simulated annealing and dispersion-corrected plane-wave density functional theory (DFT-D2*) calculations. The protocol comprises three modules: (i) the assignment of motion groups, (ii) a Monte Carlo simulated annealing algorithm for generating tens of thousands of candidate structures, and (iii) DFT-D2* geometry optimizations of structural models and concomitant computation of <small><sup>35</sup></small>Cl EFG tensors. Key benchmarked metrics are used for retaining the best candidate structures, including unit cell parameters, static lattice energies, and EFG distances (<em>Γ</em><small><sub>EFG</sub></small>). The protocol is shown to generate structural models that are excellent matches with experimental crystal structures that have been DFT-D2* geometry optimized, as validated by crystallographic <em>R</em>-factors (<em>R</em>) and root-mean squared distances (RMSDs) of atomic positions that are well below 10% and 0.2 Å, respectively. Finally, consideration is given to the use of the QNMRX-CSP protocol as a standalone technique or in concert with other NMRX methods and Rietveld refinements, and possible applications employing other quadrupolar nuclei (<em>i.e.</em>, <small><sup>14</sup></small>N and <small><sup>17</sup></small>O).</p>\",\"PeriodicalId\":70,\"journal\":{\"name\":\"CrystEngComm\",\"volume\":\" 35\",\"pages\":\" 4782-4803\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/ce/d3ce01306e?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CrystEngComm\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/ce/d3ce01306e\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CrystEngComm","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ce/d3ce01306e","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍了一种用于预测和完善晶体结构的新型四极核磁共振晶体学指导晶体结构预测(QNMRX-CSP)方案,包括其设计、基准测试以及在七种有机盐酸盐中的应用。我们选择了五种具有较小刚性有机成分的盐酸盐作为基准模型系统:盐酸甜菜碱、盐酸甘氨酸、盐酸 D-丙氨酸、盐酸胍和盐酸氨基胍;并选择了两种盐酸盐进行盲测:N,N′-二甲基甘氨酸盐酸盐和二甲双胍盐酸盐。QNMRX-CSP 方案使用实验 35Cl 固态核磁共振(SSNMR)光谱和 X 射线衍射(XRD)数据,并结合蒙特卡罗模拟退火和色散校正平面波密度泛函理论(DFT-D2*)计算。该方案包括三个模块:(i) 运动基团的分配;(ii) 蒙特卡罗模拟退火算法,用于生成数以万计的候选结构;(iii) 结构模型的 DFT-D2* 几何优化和 35Cl EFG 张量的同步计算。主要基准指标用于保留最佳候选结构,包括单胞参数、静态晶格能和 EFG 距离 (ΓEFG)。晶体学 R 因子 (R) 和原子位置均方根距离 (RMSD) 分别远低于 10% 和 0.2 Å,证明该方案生成的结构模型与经过 DFT-D2* 几何优化的实验晶体结构非常匹配。最后,还考虑了将 QNMRX-CSP 方案作为一项独立技术或与其他 NMRX 方法和里特维尔德细化方法配合使用的问题,以及将其用于其他四极核(即 14N 和 17O)的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Quadrupolar NMR crystallography guided crystal structure prediction (QNMRX-CSP)†

Quadrupolar NMR crystallography guided crystal structure prediction (QNMRX-CSP)†

We describe a new quadrupolar NMR crystallography guided crystal structure prediction (QNMRX-CSP) protocol for the prediction and refinement of crystal structures, including its design, benchmarking, and application to seven organic HCl salts. Five HCl salts with a limited number of low-energy conformations were chosen as model systems for benchmarking: betaine HCl, glycine HCl, D-alanine HCl, guanidine HCl, and aminoguanidine HCl; two were chosen for blind tests: N,N′-dimethylglycine HCl and metformin HCl. The QNMRX-CSP protocol uses experimental 35Cl solid-state NMR (SSNMR) spectra and X-ray diffraction (XRD) data in tandem with Monte Carlo simulated annealing and dispersion-corrected plane-wave density functional theory (DFT-D2*) calculations. The protocol comprises three modules: (i) the assignment of motion groups, (ii) a Monte Carlo simulated annealing algorithm for generating tens of thousands of candidate structures, and (iii) DFT-D2* geometry optimizations of structural models and concomitant computation of 35Cl EFG tensors. Key benchmarked metrics are used for retaining the best candidate structures, including unit cell parameters, static lattice energies, and EFG distances (ΓEFG). The protocol is shown to generate structural models that are excellent matches with experimental crystal structures that have been DFT-D2* geometry optimized, as validated by crystallographic R-factors (R) and root-mean squared distances (RMSDs) of atomic positions that are well below 10% and 0.2 Å, respectively. Finally, consideration is given to the use of the QNMRX-CSP protocol as a standalone technique or in concert with other NMRX methods and Rietveld refinements, and possible applications employing other quadrupolar nuclei (i.e., 14N and 17O).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CrystEngComm
CrystEngComm 化学-化学综合
CiteScore
5.50
自引率
9.70%
发文量
747
审稿时长
1.7 months
期刊介绍: Design and understanding of solid-state and crystalline materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信