Mohammad Mir, Babak Haghighi, Rohollah Taghavi Mendi, Iman Motie
{"title":"利用压应力作用下辉长岩的电光参数建立地震前兆的物理模型","authors":"Mohammad Mir, Babak Haghighi, Rohollah Taghavi Mendi, Iman Motie","doi":"10.1111/ter.12740","DOIUrl":null,"url":null,"abstract":"Earthquakes occur when tectonic stresses develop deep within the Earth. In the earthquake zone, the rocks are igneous, including gabbro. Gabbro rocks produce electron–hole pairs under tectonic stresses. These holes flow in the volume of gabbro rock under tectonic pressures and cause changes in electric charge and as a result, produce variable electric and magnetic fields that lead to a signal of electromagnetic waves at the place of pressure. This electromagnetic signal is received on the surface of the Earth after passing through different layers of the Earth. In this work, by applying uniaxial hydraulic pressure on the gabbro rock, a new physical model similar to an earthquake is presented, which by receiving and monitoring electromagnetic signals, can help to investigate the tectonic changes in the Earth. By utilizing the electrical and optical parameters, the intensity of the electromagnetic signal of the earthquake created on the Earth's surface is calculated.","PeriodicalId":22260,"journal":{"name":"Terra Nova","volume":"253 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Physical modelling of earthquake precursor by the electro‐optical parameters of gabbro rock under compressive stress\",\"authors\":\"Mohammad Mir, Babak Haghighi, Rohollah Taghavi Mendi, Iman Motie\",\"doi\":\"10.1111/ter.12740\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Earthquakes occur when tectonic stresses develop deep within the Earth. In the earthquake zone, the rocks are igneous, including gabbro. Gabbro rocks produce electron–hole pairs under tectonic stresses. These holes flow in the volume of gabbro rock under tectonic pressures and cause changes in electric charge and as a result, produce variable electric and magnetic fields that lead to a signal of electromagnetic waves at the place of pressure. This electromagnetic signal is received on the surface of the Earth after passing through different layers of the Earth. In this work, by applying uniaxial hydraulic pressure on the gabbro rock, a new physical model similar to an earthquake is presented, which by receiving and monitoring electromagnetic signals, can help to investigate the tectonic changes in the Earth. By utilizing the electrical and optical parameters, the intensity of the electromagnetic signal of the earthquake created on the Earth's surface is calculated.\",\"PeriodicalId\":22260,\"journal\":{\"name\":\"Terra Nova\",\"volume\":\"253 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Terra Nova\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1111/ter.12740\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Terra Nova","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1111/ter.12740","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Physical modelling of earthquake precursor by the electro‐optical parameters of gabbro rock under compressive stress
Earthquakes occur when tectonic stresses develop deep within the Earth. In the earthquake zone, the rocks are igneous, including gabbro. Gabbro rocks produce electron–hole pairs under tectonic stresses. These holes flow in the volume of gabbro rock under tectonic pressures and cause changes in electric charge and as a result, produce variable electric and magnetic fields that lead to a signal of electromagnetic waves at the place of pressure. This electromagnetic signal is received on the surface of the Earth after passing through different layers of the Earth. In this work, by applying uniaxial hydraulic pressure on the gabbro rock, a new physical model similar to an earthquake is presented, which by receiving and monitoring electromagnetic signals, can help to investigate the tectonic changes in the Earth. By utilizing the electrical and optical parameters, the intensity of the electromagnetic signal of the earthquake created on the Earth's surface is calculated.
期刊介绍:
Terra Nova publishes short, innovative and provocative papers of interest to a wide readership and covering the broadest spectrum of the Solid Earth and Planetary Sciences. Terra Nova encompasses geology, geophysics and geochemistry, and extends to the fluid envelopes (atmosphere, ocean, environment) whenever coupling with the Solid Earth is involved.