klt 奇点的还原商

IF 2.6 1区 数学 Q1 MATHEMATICS
Lukas Braun, Daniel Greb, Kevin Langlois, Joaquín Moraga
{"title":"klt 奇点的还原商","authors":"Lukas Braun, Daniel Greb, Kevin Langlois, Joaquín Moraga","doi":"10.1007/s00222-024-01280-2","DOIUrl":null,"url":null,"abstract":"<p>We prove that the quotient of a klt type singularity by a reductive group is of klt type in characteristic 0. In particular, given a klt variety <span>\\(X\\)</span> endowed with the action of a reductive group <span>\\(G\\)</span> and admitting a quasi-projective good quotient <span>\\(X\\rightarrow X/\\!/G\\)</span>, we can find a boundary <span>\\(B\\)</span> on <span>\\(X/\\!/G\\)</span> so that the pair <span>\\((X/\\!/G,B)\\)</span> is klt. This applies for example to GIT-quotients of klt varieties. Our main result has consequences for complex spaces obtained as quotients of Hamiltonian Kähler <span>\\(G\\)</span>-manifolds, for collapsings of homogeneous vector bundles as introduced by Kempf, and for good moduli spaces of smooth Artin stacks. In particular, it implies that the good moduli space parametrizing <span>\\(n\\)</span>-dimensional K-polystable smooth Fano varieties of volume <span>\\(v\\)</span> has klt type singularities. As a corresponding result regarding global geometry, we show that quotients of Mori Dream Spaces with klt Cox rings are Mori Dream Spaces with klt Cox ring. This in turn applies to show that projective GIT-quotients of varieties of Fano type are of Fano type; in particular, projective moduli spaces of semistable quiver representations are of Fano type.</p>","PeriodicalId":14429,"journal":{"name":"Inventiones mathematicae","volume":"69 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reductive quotients of klt singularities\",\"authors\":\"Lukas Braun, Daniel Greb, Kevin Langlois, Joaquín Moraga\",\"doi\":\"10.1007/s00222-024-01280-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove that the quotient of a klt type singularity by a reductive group is of klt type in characteristic 0. In particular, given a klt variety <span>\\\\(X\\\\)</span> endowed with the action of a reductive group <span>\\\\(G\\\\)</span> and admitting a quasi-projective good quotient <span>\\\\(X\\\\rightarrow X/\\\\!/G\\\\)</span>, we can find a boundary <span>\\\\(B\\\\)</span> on <span>\\\\(X/\\\\!/G\\\\)</span> so that the pair <span>\\\\((X/\\\\!/G,B)\\\\)</span> is klt. This applies for example to GIT-quotients of klt varieties. Our main result has consequences for complex spaces obtained as quotients of Hamiltonian Kähler <span>\\\\(G\\\\)</span>-manifolds, for collapsings of homogeneous vector bundles as introduced by Kempf, and for good moduli spaces of smooth Artin stacks. In particular, it implies that the good moduli space parametrizing <span>\\\\(n\\\\)</span>-dimensional K-polystable smooth Fano varieties of volume <span>\\\\(v\\\\)</span> has klt type singularities. As a corresponding result regarding global geometry, we show that quotients of Mori Dream Spaces with klt Cox rings are Mori Dream Spaces with klt Cox ring. This in turn applies to show that projective GIT-quotients of varieties of Fano type are of Fano type; in particular, projective moduli spaces of semistable quiver representations are of Fano type.</p>\",\"PeriodicalId\":14429,\"journal\":{\"name\":\"Inventiones mathematicae\",\"volume\":\"69 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inventiones mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00222-024-01280-2\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inventiones mathematicae","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00222-024-01280-2","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了一个还原群的 klt 型奇点的商在特征 0 中是 klt 型的。特别是,给定一个klt变种(X)有还原群(G)的作用,并且允许一个准投影好商(X//!/G),我们可以在(X//!/G)上找到一个边界(B),这样一对(((X//!/G,B)\)就是klt。这适用于 klt varieties 的 GIT-quotients。我们的主要结果对作为哈密顿凯勒(G)-曼olds 的商获得的复数空间、肯普夫引入的同质向量束的折叠以及光滑阿尔丁堆栈的良好模空间都有影响。特别是,它意味着参数化体积 \(v\) 的 \(n\)-dimensional K-polystable smooth Fano varieties 的良好模空间具有 klt 型奇点。作为关于全局几何的相应结果,我们证明了具有 klt Cox 环的 Mori Dream Spaces 的商是具有 klt Cox 环的 Mori Dream Spaces。这反过来又证明了法诺型 varieties 的投影 GIT-商是法诺型的;特别是,半稳态 quiver 表示的投影模空间是法诺型的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Reductive quotients of klt singularities

Reductive quotients of klt singularities

We prove that the quotient of a klt type singularity by a reductive group is of klt type in characteristic 0. In particular, given a klt variety \(X\) endowed with the action of a reductive group \(G\) and admitting a quasi-projective good quotient \(X\rightarrow X/\!/G\), we can find a boundary \(B\) on \(X/\!/G\) so that the pair \((X/\!/G,B)\) is klt. This applies for example to GIT-quotients of klt varieties. Our main result has consequences for complex spaces obtained as quotients of Hamiltonian Kähler \(G\)-manifolds, for collapsings of homogeneous vector bundles as introduced by Kempf, and for good moduli spaces of smooth Artin stacks. In particular, it implies that the good moduli space parametrizing \(n\)-dimensional K-polystable smooth Fano varieties of volume \(v\) has klt type singularities. As a corresponding result regarding global geometry, we show that quotients of Mori Dream Spaces with klt Cox rings are Mori Dream Spaces with klt Cox ring. This in turn applies to show that projective GIT-quotients of varieties of Fano type are of Fano type; in particular, projective moduli spaces of semistable quiver representations are of Fano type.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inventiones mathematicae
Inventiones mathematicae 数学-数学
CiteScore
5.60
自引率
3.20%
发文量
76
审稿时长
12 months
期刊介绍: This journal is published at frequent intervals to bring out new contributions to mathematics. It is a policy of the journal to publish papers within four months of acceptance. Once a paper is accepted it goes immediately into production and no changes can be made by the author(s).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信