多模式筛选发现噪声调控蛋白

Oscar Garcia-Blay, Xinyu Hu, Christin L. Wassermann, Tom van Bokhoven, Frederique M.B. Struijs, Maike M.K. Hansen
{"title":"多模式筛选发现噪声调控蛋白","authors":"Oscar Garcia-Blay, Xinyu Hu, Christin L. Wassermann, Tom van Bokhoven, Frederique M.B. Struijs, Maike M.K. Hansen","doi":"10.1101/2024.07.17.603871","DOIUrl":null,"url":null,"abstract":"Gene-expression noise can influence cell-fate choices across pathology and physiology. However, a crucial question persists: do regulatory proteins or pathways exist that control noise independently of mean expression levels? Our integrative approach, combining single-cell RNA sequencing with proteomics and regulator enrichment analysis, reveals 32 putative noise regulators. SON, a nuclear speckle-associated protein, alters transcriptional noise without changing mean expression levels. Furthermore, SON's noise regulation can propagate to the protein level. Long-read and total RNA sequencing shows that SON's noise regulation does not significantly change isoform usage or splicing efficiency. Moreover, SON depletion reduces state-switching in pluripotent mouse embryonic stem cells and impacts their fate choice during\ndifferentiation. Collectively, we discover a class of proteins that regulates noise orthogonally to mean expression levels. This work serves as a proof-of-concept that can identify other functional noise-regulators throughout development and disease progression.","PeriodicalId":501213,"journal":{"name":"bioRxiv - Systems Biology","volume":"69 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multimodal screen reveals noise regulatory proteins\",\"authors\":\"Oscar Garcia-Blay, Xinyu Hu, Christin L. Wassermann, Tom van Bokhoven, Frederique M.B. Struijs, Maike M.K. Hansen\",\"doi\":\"10.1101/2024.07.17.603871\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gene-expression noise can influence cell-fate choices across pathology and physiology. However, a crucial question persists: do regulatory proteins or pathways exist that control noise independently of mean expression levels? Our integrative approach, combining single-cell RNA sequencing with proteomics and regulator enrichment analysis, reveals 32 putative noise regulators. SON, a nuclear speckle-associated protein, alters transcriptional noise without changing mean expression levels. Furthermore, SON's noise regulation can propagate to the protein level. Long-read and total RNA sequencing shows that SON's noise regulation does not significantly change isoform usage or splicing efficiency. Moreover, SON depletion reduces state-switching in pluripotent mouse embryonic stem cells and impacts their fate choice during\\ndifferentiation. Collectively, we discover a class of proteins that regulates noise orthogonally to mean expression levels. This work serves as a proof-of-concept that can identify other functional noise-regulators throughout development and disease progression.\",\"PeriodicalId\":501213,\"journal\":{\"name\":\"bioRxiv - Systems Biology\",\"volume\":\"69 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Systems Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.07.17.603871\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Systems Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.07.17.603871","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基因表达噪音会影响病理学和生理学中细胞命运的选择。然而,一个关键问题依然存在:是否存在独立于平均表达水平控制噪音的调控蛋白或通路?我们的综合方法将单细胞 RNA 测序与蛋白质组学和调控因子富集分析相结合,揭示了 32 种推定的噪声调控因子。SON是一种核斑点相关蛋白,它能在不改变平均表达水平的情况下改变转录噪音。此外,SON的噪音调节还能传播到蛋白质水平。长读和总RNA测序显示,SON的噪音调节不会显著改变同工酶的使用或剪接效率。此外,SON缺失会降低多能小鼠胚胎干细胞的状态转换,并影响它们在分化过程中的命运选择。总之,我们发现了一类正交调节噪声与平均表达水平的蛋白质。这项工作可作为概念验证,在整个发育和疾病进展过程中识别其他功能性噪声调节因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multimodal screen reveals noise regulatory proteins
Gene-expression noise can influence cell-fate choices across pathology and physiology. However, a crucial question persists: do regulatory proteins or pathways exist that control noise independently of mean expression levels? Our integrative approach, combining single-cell RNA sequencing with proteomics and regulator enrichment analysis, reveals 32 putative noise regulators. SON, a nuclear speckle-associated protein, alters transcriptional noise without changing mean expression levels. Furthermore, SON's noise regulation can propagate to the protein level. Long-read and total RNA sequencing shows that SON's noise regulation does not significantly change isoform usage or splicing efficiency. Moreover, SON depletion reduces state-switching in pluripotent mouse embryonic stem cells and impacts their fate choice during differentiation. Collectively, we discover a class of proteins that regulates noise orthogonally to mean expression levels. This work serves as a proof-of-concept that can identify other functional noise-regulators throughout development and disease progression.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信