二维半相对论哈特里方程的修正散射

IF 1.1 3区 数学 Q1 MATHEMATICS
Soonsik Kwon, Kiyeon Lee, Changhun Yang
{"title":"二维半相对论哈特里方程的修正散射","authors":"Soonsik Kwon, Kiyeon Lee, Changhun Yang","doi":"10.1007/s00028-024-00982-7","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we consider the asymptotic behaviors of small solutions to the semi-relativistic Hartree equations in two dimension. The nonlinear term is the cubic one convolved with the Coulomb potential <span>\\(|x|^{-1}\\)</span>, and it produces the<i> long-range interaction</i> in the sense of scattering phenomenon. From this observation, one anticipates that small solutions converge to modified scattering states, although they decay as linear solutions. We show the global well-posedness and the modified scattering for small solutions in weighted Sobolev spaces. Our proof follows a road map of exploiting the space-time resonance by Germain et al. (Int Math Res Not 2009(3):414–432, 2008), and Pusateri (Commun Math Phys 332(3):1203–1234, 2014). Compared to the result in three dimensional case (Pusateri 2014), weaker time decay in two dimension is one of the main obstacles.</p>","PeriodicalId":51083,"journal":{"name":"Journal of Evolution Equations","volume":"82 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The modified scattering of two dimensional semi-relativistic Hartree equations\",\"authors\":\"Soonsik Kwon, Kiyeon Lee, Changhun Yang\",\"doi\":\"10.1007/s00028-024-00982-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we consider the asymptotic behaviors of small solutions to the semi-relativistic Hartree equations in two dimension. The nonlinear term is the cubic one convolved with the Coulomb potential <span>\\\\(|x|^{-1}\\\\)</span>, and it produces the<i> long-range interaction</i> in the sense of scattering phenomenon. From this observation, one anticipates that small solutions converge to modified scattering states, although they decay as linear solutions. We show the global well-posedness and the modified scattering for small solutions in weighted Sobolev spaces. Our proof follows a road map of exploiting the space-time resonance by Germain et al. (Int Math Res Not 2009(3):414–432, 2008), and Pusateri (Commun Math Phys 332(3):1203–1234, 2014). Compared to the result in three dimensional case (Pusateri 2014), weaker time decay in two dimension is one of the main obstacles.</p>\",\"PeriodicalId\":51083,\"journal\":{\"name\":\"Journal of Evolution Equations\",\"volume\":\"82 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Evolution Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00028-024-00982-7\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Evolution Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00028-024-00982-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑了二维半相对论哈特里方程小解的渐近行为。非线性项是与库仑势 \(|x|^{-1}\)相卷积的立方项,它会产生散射现象意义上的长程相互作用。根据这一观察结果,我们可以预见小解会收敛于修正的散射态,尽管它们会衰减为线性解。我们证明了小解在加权索波列夫空间中的全局好求和修正散射。我们的证明遵循了杰曼等人(Int Math Res Not 2009(3):414-432, 2008)和普萨特里(Commun Math Phys 332(3):1203-1234, 2014)利用时空共振的路线图。与三维情况下的结果(Pusateri,2014 年)相比,二维情况下的时间衰减较弱是主要障碍之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The modified scattering of two dimensional semi-relativistic Hartree equations

The modified scattering of two dimensional semi-relativistic Hartree equations

In this paper, we consider the asymptotic behaviors of small solutions to the semi-relativistic Hartree equations in two dimension. The nonlinear term is the cubic one convolved with the Coulomb potential \(|x|^{-1}\), and it produces the long-range interaction in the sense of scattering phenomenon. From this observation, one anticipates that small solutions converge to modified scattering states, although they decay as linear solutions. We show the global well-posedness and the modified scattering for small solutions in weighted Sobolev spaces. Our proof follows a road map of exploiting the space-time resonance by Germain et al. (Int Math Res Not 2009(3):414–432, 2008), and Pusateri (Commun Math Phys 332(3):1203–1234, 2014). Compared to the result in three dimensional case (Pusateri 2014), weaker time decay in two dimension is one of the main obstacles.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
7.10%
发文量
90
审稿时长
>12 weeks
期刊介绍: The Journal of Evolution Equations (JEE) publishes high-quality, peer-reviewed papers on equations dealing with time dependent systems and ranging from abstract theory to concrete applications. Research articles should contain new and important results. Survey articles on recent developments are also considered as important contributions to the field. Particular topics covered by the journal are: Linear and Nonlinear Semigroups Parabolic and Hyperbolic Partial Differential Equations Reaction Diffusion Equations Deterministic and Stochastic Control Systems Transport and Population Equations Volterra Equations Delay Equations Stochastic Processes and Dirichlet Forms Maximal Regularity and Functional Calculi Asymptotics and Qualitative Theory of Linear and Nonlinear Evolution Equations Evolution Equations in Mathematical Physics Elliptic Operators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信