MD-LDA:用于识别中医病机的有监督 LDA 主题模型

IF 1.7 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Meiwen Li, Liye Xia, Qingtao Wu, Lin Wang, Junlong Zhu, Mingchuan Zhang
{"title":"MD-LDA:用于识别中医病机的有监督 LDA 主题模型","authors":"Meiwen Li, Liye Xia, Qingtao Wu, Lin Wang, Junlong Zhu, Mingchuan Zhang","doi":"10.1108/dta-12-2023-0868","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>In traditional Chinese medicine (TCM), the mechanism of disease (MD) constitutes an essential element of syndrome differentiation and treatment, elucidating the mechanisms underlying the occurrence, progression, alterations and outcomes of diseases. However, there is a dearth of research in the field of intelligent diagnosis concerning the analysis of MD.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>In this paper, we propose a supervised Latent Dirichlet Allocation (LDA) topic model, termed MD-LDA, which elucidates the process of MDs identification. We leverage the label information inherent in the data as prior knowledge and incorporate it into the model’s training. Additionally, we devise two parallel parameter estimation algorithms for efficient training. Furthermore, we introduce a benchmark MD identification dataset, named TMD, for training MD-LDA. Finally, we validate the performance of MD-LDA through comprehensive experiments.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>The results show that MD-LDA is effective and efficient. Moreover, MD-LDA outperforms the state-of-the-art topic models on perplexity, Kullback–Leibler (KL) and classification performance.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>The proposed MD-LDA can be applied for the MD discovery and analysis of TCM clinical diagnosis, so as to improve the interpretability and reliability of intelligent diagnosis and treatment.</p><!--/ Abstract__block -->","PeriodicalId":56156,"journal":{"name":"Data Technologies and Applications","volume":"36 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MD-LDA: a supervised LDA topic model for identifying mechanism of disease in TCM\",\"authors\":\"Meiwen Li, Liye Xia, Qingtao Wu, Lin Wang, Junlong Zhu, Mingchuan Zhang\",\"doi\":\"10.1108/dta-12-2023-0868\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Purpose</h3>\\n<p>In traditional Chinese medicine (TCM), the mechanism of disease (MD) constitutes an essential element of syndrome differentiation and treatment, elucidating the mechanisms underlying the occurrence, progression, alterations and outcomes of diseases. However, there is a dearth of research in the field of intelligent diagnosis concerning the analysis of MD.</p><!--/ Abstract__block -->\\n<h3>Design/methodology/approach</h3>\\n<p>In this paper, we propose a supervised Latent Dirichlet Allocation (LDA) topic model, termed MD-LDA, which elucidates the process of MDs identification. We leverage the label information inherent in the data as prior knowledge and incorporate it into the model’s training. Additionally, we devise two parallel parameter estimation algorithms for efficient training. Furthermore, we introduce a benchmark MD identification dataset, named TMD, for training MD-LDA. Finally, we validate the performance of MD-LDA through comprehensive experiments.</p><!--/ Abstract__block -->\\n<h3>Findings</h3>\\n<p>The results show that MD-LDA is effective and efficient. Moreover, MD-LDA outperforms the state-of-the-art topic models on perplexity, Kullback–Leibler (KL) and classification performance.</p><!--/ Abstract__block -->\\n<h3>Originality/value</h3>\\n<p>The proposed MD-LDA can be applied for the MD discovery and analysis of TCM clinical diagnosis, so as to improve the interpretability and reliability of intelligent diagnosis and treatment.</p><!--/ Abstract__block -->\",\"PeriodicalId\":56156,\"journal\":{\"name\":\"Data Technologies and Applications\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data Technologies and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1108/dta-12-2023-0868\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Technologies and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1108/dta-12-2023-0868","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

目的在传统中医(TCM)中,病机(MD)是辨证论治的基本要素,它阐明了疾病发生、发展、改变和结局的内在机制。在本文中,我们提出了一种有监督的潜狄利克特分配(LDA)主题模型,称为 MD-LDA,它阐明了 MD 的识别过程。我们将数据中固有的标签信息作为先验知识加以利用,并将其纳入模型的训练中。此外,我们还设计了两种并行参数估计算法,以实现高效训练。此外,我们还引入了名为 TMD 的基准 MD 识别数据集,用于训练 MD-LDA。最后,我们通过综合实验验证了 MD-LDA 的性能。原创性/价值所提出的 MD-LDA 可应用于中医临床诊断的 MD 发现和分析,从而提高智能诊疗的可解释性和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MD-LDA: a supervised LDA topic model for identifying mechanism of disease in TCM

Purpose

In traditional Chinese medicine (TCM), the mechanism of disease (MD) constitutes an essential element of syndrome differentiation and treatment, elucidating the mechanisms underlying the occurrence, progression, alterations and outcomes of diseases. However, there is a dearth of research in the field of intelligent diagnosis concerning the analysis of MD.

Design/methodology/approach

In this paper, we propose a supervised Latent Dirichlet Allocation (LDA) topic model, termed MD-LDA, which elucidates the process of MDs identification. We leverage the label information inherent in the data as prior knowledge and incorporate it into the model’s training. Additionally, we devise two parallel parameter estimation algorithms for efficient training. Furthermore, we introduce a benchmark MD identification dataset, named TMD, for training MD-LDA. Finally, we validate the performance of MD-LDA through comprehensive experiments.

Findings

The results show that MD-LDA is effective and efficient. Moreover, MD-LDA outperforms the state-of-the-art topic models on perplexity, Kullback–Leibler (KL) and classification performance.

Originality/value

The proposed MD-LDA can be applied for the MD discovery and analysis of TCM clinical diagnosis, so as to improve the interpretability and reliability of intelligent diagnosis and treatment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Data Technologies and Applications
Data Technologies and Applications Social Sciences-Library and Information Sciences
CiteScore
3.80
自引率
6.20%
发文量
29
期刊介绍: Previously published as: Program Online from: 2018 Subject Area: Information & Knowledge Management, Library Studies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信