动力学福克-普朗克方程的变量方法

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Dallas Albritton, Scott Armstrong, Jean-Christophe Mourrat, Matthew Novack
{"title":"动力学福克-普朗克方程的变量方法","authors":"Dallas Albritton, Scott Armstrong, Jean-Christophe Mourrat, Matthew Novack","doi":"10.2140/apde.2024.17.1953","DOIUrl":null,"url":null,"abstract":"<p>We develop a functional-analytic approach to the study of the Kramers and kinetic Fokker–Planck equations which parallels the classical <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math> theory of uniformly elliptic equations. In particular, we identify a function space analogous to <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math> and develop a well-posedness theory for weak solutions in this space. In the case of a conservative force, we identify the weak solution as the minimizer of a uniformly convex functional. We prove new functional inequalities of Poincaré- and Hörmander-type and combine them with basic energy estimates (analogous to the Caccioppoli inequality) in an iteration procedure to obtain the <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>C</mi></mrow><mrow><mi>∞</mi></mrow></msup></math> regularity of weak solutions. We also use the Poincaré-type inequality to give an elementary proof of the exponential convergence to equilibrium for solutions of the kinetic Fokker–Planck equation which mirrors the classic dissipative estimate for the heat equation. Finally, we prove enhanced dissipation in a weakly collisional limit. </p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variational methods for the kinetic Fokker–Planck equation\",\"authors\":\"Dallas Albritton, Scott Armstrong, Jean-Christophe Mourrat, Matthew Novack\",\"doi\":\"10.2140/apde.2024.17.1953\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We develop a functional-analytic approach to the study of the Kramers and kinetic Fokker–Planck equations which parallels the classical <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math> theory of uniformly elliptic equations. In particular, we identify a function space analogous to <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math> and develop a well-posedness theory for weak solutions in this space. In the case of a conservative force, we identify the weak solution as the minimizer of a uniformly convex functional. We prove new functional inequalities of Poincaré- and Hörmander-type and combine them with basic energy estimates (analogous to the Caccioppoli inequality) in an iteration procedure to obtain the <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mrow><mi>C</mi></mrow><mrow><mi>∞</mi></mrow></msup></math> regularity of weak solutions. We also use the Poincaré-type inequality to give an elementary proof of the exponential convergence to equilibrium for solutions of the kinetic Fokker–Planck equation which mirrors the classic dissipative estimate for the heat equation. Finally, we prove enhanced dissipation in a weakly collisional limit. </p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/apde.2024.17.1953\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/apde.2024.17.1953","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们开发了一种研究克拉默方程和动力学福克-普朗克方程的函数分析方法,这种方法与均匀椭圆方程的经典 H1 理论相似。特别是,我们确定了一个类似于 H1 的函数空间,并发展了该空间中弱解的拟合理论。在保守力的情况下,我们将弱解确定为均匀凸函数的最小值。我们证明了 Poincaré 型和 Hörmander 型的新函数不等式,并将它们与迭代过程中的基本能量估计(类似于 Caccioppoli 不等式)相结合,从而获得弱解的 C∞ 正则性。我们还利用波恩卡莱型不等式给出了动能福克-普朗克方程解指数收敛到平衡的基本证明,这反映了热方程的经典耗散估计。最后,我们证明了弱碰撞极限下的增强耗散。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Variational methods for the kinetic Fokker–Planck equation

We develop a functional-analytic approach to the study of the Kramers and kinetic Fokker–Planck equations which parallels the classical H1 theory of uniformly elliptic equations. In particular, we identify a function space analogous to H1 and develop a well-posedness theory for weak solutions in this space. In the case of a conservative force, we identify the weak solution as the minimizer of a uniformly convex functional. We prove new functional inequalities of Poincaré- and Hörmander-type and combine them with basic energy estimates (analogous to the Caccioppoli inequality) in an iteration procedure to obtain the C regularity of weak solutions. We also use the Poincaré-type inequality to give an elementary proof of the exponential convergence to equilibrium for solutions of the kinetic Fokker–Planck equation which mirrors the classic dissipative estimate for the heat equation. Finally, we prove enhanced dissipation in a weakly collisional limit.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信