Gwyn Bellamy, Christopher Dodd, Kevin McGerty, Thomas Nevins
{"title":"仿生交点变体上的拉格朗日斯克莱塔和科斯祖尔对偶性","authors":"Gwyn Bellamy, Christopher Dodd, Kevin McGerty, Thomas Nevins","doi":"arxiv-2407.13286","DOIUrl":null,"url":null,"abstract":"We consider the category of modules over sheaves of Deformation-Quantization\n(DQ) algebras on bionic symplectic varieties. These spaces are equipped with\nboth an elliptic $\\mathbb{G}_m$-action and a Hamiltonian $\\mathbb{G}_m$-action,\nwith finitely many fixed points. On these spaces one can consider geometric\ncategory $\\mathcal{O}$: the category of (holonomic) modules supported on the\nLagrangian attracting set of the Hamiltonian action. We show that there exists\na local generator in geometric category $\\mathcal{O}$ whose dg endomorphism\nring, cohomologically supported on the Lagrangian attracting set, is derived\nequivalent to the category of all DQ-modules. This is a version of Koszul\nduality generalizing the equivalence between D-modules on a smooth variety and\ndg-modules over the de Rham complex.","PeriodicalId":501155,"journal":{"name":"arXiv - MATH - Symplectic Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lagrangian Skeleta and Koszul Duality on Bionic Symplectic Varieties\",\"authors\":\"Gwyn Bellamy, Christopher Dodd, Kevin McGerty, Thomas Nevins\",\"doi\":\"arxiv-2407.13286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the category of modules over sheaves of Deformation-Quantization\\n(DQ) algebras on bionic symplectic varieties. These spaces are equipped with\\nboth an elliptic $\\\\mathbb{G}_m$-action and a Hamiltonian $\\\\mathbb{G}_m$-action,\\nwith finitely many fixed points. On these spaces one can consider geometric\\ncategory $\\\\mathcal{O}$: the category of (holonomic) modules supported on the\\nLagrangian attracting set of the Hamiltonian action. We show that there exists\\na local generator in geometric category $\\\\mathcal{O}$ whose dg endomorphism\\nring, cohomologically supported on the Lagrangian attracting set, is derived\\nequivalent to the category of all DQ-modules. This is a version of Koszul\\nduality generalizing the equivalence between D-modules on a smooth variety and\\ndg-modules over the de Rham complex.\",\"PeriodicalId\":501155,\"journal\":{\"name\":\"arXiv - MATH - Symplectic Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Symplectic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.13286\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Symplectic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.13286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Lagrangian Skeleta and Koszul Duality on Bionic Symplectic Varieties
We consider the category of modules over sheaves of Deformation-Quantization
(DQ) algebras on bionic symplectic varieties. These spaces are equipped with
both an elliptic $\mathbb{G}_m$-action and a Hamiltonian $\mathbb{G}_m$-action,
with finitely many fixed points. On these spaces one can consider geometric
category $\mathcal{O}$: the category of (holonomic) modules supported on the
Lagrangian attracting set of the Hamiltonian action. We show that there exists
a local generator in geometric category $\mathcal{O}$ whose dg endomorphism
ring, cohomologically supported on the Lagrangian attracting set, is derived
equivalent to the category of all DQ-modules. This is a version of Koszul
duality generalizing the equivalence between D-modules on a smooth variety and
dg-modules over the de Rham complex.