仿生交点变体上的拉格朗日斯克莱塔和科斯祖尔对偶性

Gwyn Bellamy, Christopher Dodd, Kevin McGerty, Thomas Nevins
{"title":"仿生交点变体上的拉格朗日斯克莱塔和科斯祖尔对偶性","authors":"Gwyn Bellamy, Christopher Dodd, Kevin McGerty, Thomas Nevins","doi":"arxiv-2407.13286","DOIUrl":null,"url":null,"abstract":"We consider the category of modules over sheaves of Deformation-Quantization\n(DQ) algebras on bionic symplectic varieties. These spaces are equipped with\nboth an elliptic $\\mathbb{G}_m$-action and a Hamiltonian $\\mathbb{G}_m$-action,\nwith finitely many fixed points. On these spaces one can consider geometric\ncategory $\\mathcal{O}$: the category of (holonomic) modules supported on the\nLagrangian attracting set of the Hamiltonian action. We show that there exists\na local generator in geometric category $\\mathcal{O}$ whose dg endomorphism\nring, cohomologically supported on the Lagrangian attracting set, is derived\nequivalent to the category of all DQ-modules. This is a version of Koszul\nduality generalizing the equivalence between D-modules on a smooth variety and\ndg-modules over the de Rham complex.","PeriodicalId":501155,"journal":{"name":"arXiv - MATH - Symplectic Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lagrangian Skeleta and Koszul Duality on Bionic Symplectic Varieties\",\"authors\":\"Gwyn Bellamy, Christopher Dodd, Kevin McGerty, Thomas Nevins\",\"doi\":\"arxiv-2407.13286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the category of modules over sheaves of Deformation-Quantization\\n(DQ) algebras on bionic symplectic varieties. These spaces are equipped with\\nboth an elliptic $\\\\mathbb{G}_m$-action and a Hamiltonian $\\\\mathbb{G}_m$-action,\\nwith finitely many fixed points. On these spaces one can consider geometric\\ncategory $\\\\mathcal{O}$: the category of (holonomic) modules supported on the\\nLagrangian attracting set of the Hamiltonian action. We show that there exists\\na local generator in geometric category $\\\\mathcal{O}$ whose dg endomorphism\\nring, cohomologically supported on the Lagrangian attracting set, is derived\\nequivalent to the category of all DQ-modules. This is a version of Koszul\\nduality generalizing the equivalence between D-modules on a smooth variety and\\ndg-modules over the de Rham complex.\",\"PeriodicalId\":501155,\"journal\":{\"name\":\"arXiv - MATH - Symplectic Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Symplectic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.13286\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Symplectic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.13286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑的是仿生交映变体上的变形-量化(DQ)代数的剪切上的模块范畴。这些空间既有椭圆$\mathbb{G}_m$作用,又有哈密顿$\mathbb{G}_m$作用,而且有有限多个定点。在这些空间上,我们可以考虑几何范畴 $\mathcal{O}$:哈密顿作用的拉格朗日吸引集上支持的(整体)模块范畴。我们证明在几何范畴 $\mathcal{O}$ 中存在一个局部生成器,它的同调支持于拉格朗日吸引集的 dg 内构环与所有 DQ 模块的范畴是派生等价的。这是科斯祖尔偶性的一个版本,它概括了光滑变上的 D 模块与德拉姆复数上的 dg 模块之间的等价性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lagrangian Skeleta and Koszul Duality on Bionic Symplectic Varieties
We consider the category of modules over sheaves of Deformation-Quantization (DQ) algebras on bionic symplectic varieties. These spaces are equipped with both an elliptic $\mathbb{G}_m$-action and a Hamiltonian $\mathbb{G}_m$-action, with finitely many fixed points. On these spaces one can consider geometric category $\mathcal{O}$: the category of (holonomic) modules supported on the Lagrangian attracting set of the Hamiltonian action. We show that there exists a local generator in geometric category $\mathcal{O}$ whose dg endomorphism ring, cohomologically supported on the Lagrangian attracting set, is derived equivalent to the category of all DQ-modules. This is a version of Koszul duality generalizing the equivalence between D-modules on a smooth variety and dg-modules over the de Rham complex.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信