测量时间序列中的动态相变

Bulcsú Sándor, András Rusu, Károly Dénes, Mária Ercsey-Ravasz, Zsolt I. Lázár
{"title":"测量时间序列中的动态相变","authors":"Bulcsú Sándor, András Rusu, Károly Dénes, Mária Ercsey-Ravasz, Zsolt I. Lázár","doi":"arxiv-2407.13452","DOIUrl":null,"url":null,"abstract":"There is a growing interest in methods for detecting and interpreting changes\nin experimental time evolution data. Based on measured time series, the\nquantitative characterization of dynamical phase transitions at bifurcation\npoints of the underlying chaotic systems is a notoriously difficult task.\nBuilding on prior theoretical studies that focus on the discontinuities at\n$q=1$ in the order-$q$ R\\'enyi-entropy of the trajectory space, we measure the\nderivative of the spectrum. We derive within the general context of Markov\nprocesses a computationally efficient closed-form expression for this measure.\nWe investigate its properties through well-known dynamical systems exploring\nits scope and limitations. The proposed mathematical instrument can serve as a\npredictor of dynamical phase transitions in time series.","PeriodicalId":501065,"journal":{"name":"arXiv - PHYS - Data Analysis, Statistics and Probability","volume":"125 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measuring dynamical phase transitions in time series\",\"authors\":\"Bulcsú Sándor, András Rusu, Károly Dénes, Mária Ercsey-Ravasz, Zsolt I. Lázár\",\"doi\":\"arxiv-2407.13452\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There is a growing interest in methods for detecting and interpreting changes\\nin experimental time evolution data. Based on measured time series, the\\nquantitative characterization of dynamical phase transitions at bifurcation\\npoints of the underlying chaotic systems is a notoriously difficult task.\\nBuilding on prior theoretical studies that focus on the discontinuities at\\n$q=1$ in the order-$q$ R\\\\'enyi-entropy of the trajectory space, we measure the\\nderivative of the spectrum. We derive within the general context of Markov\\nprocesses a computationally efficient closed-form expression for this measure.\\nWe investigate its properties through well-known dynamical systems exploring\\nits scope and limitations. The proposed mathematical instrument can serve as a\\npredictor of dynamical phase transitions in time series.\",\"PeriodicalId\":501065,\"journal\":{\"name\":\"arXiv - PHYS - Data Analysis, Statistics and Probability\",\"volume\":\"125 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Data Analysis, Statistics and Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.13452\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Data Analysis, Statistics and Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.13452","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人们对检测和解释实验时间演化数据变化的方法越来越感兴趣。基于测得的时间序列,对底层混沌系统分叉点的动态相变进行定量表征是一项众所周知的艰巨任务。先前的理论研究侧重于轨迹空间的阶次-q$ R\'enyi-entropy 在 q=1$ 时的不连续性,在此基础上,我们对频谱的阶次-q$ R\'enyi-entropy 进行了测量。我们在马尔可夫过程的一般背景下推导出了这种度量的计算效率闭式表达式,并通过著名的动力学系统探索其范围和局限性,研究其特性。所提出的数学工具可以作为时间序列中动态相变的预测器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Measuring dynamical phase transitions in time series
There is a growing interest in methods for detecting and interpreting changes in experimental time evolution data. Based on measured time series, the quantitative characterization of dynamical phase transitions at bifurcation points of the underlying chaotic systems is a notoriously difficult task. Building on prior theoretical studies that focus on the discontinuities at $q=1$ in the order-$q$ R\'enyi-entropy of the trajectory space, we measure the derivative of the spectrum. We derive within the general context of Markov processes a computationally efficient closed-form expression for this measure. We investigate its properties through well-known dynamical systems exploring its scope and limitations. The proposed mathematical instrument can serve as a predictor of dynamical phase transitions in time series.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信