近似黎曼求解器中的湍流动能

Pub Date : 2024-07-18 DOI:10.1134/s0965542524700532
M. I. Boldyrev
{"title":"近似黎曼求解器中的湍流动能","authors":"M. I. Boldyrev","doi":"10.1134/s0965542524700532","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Turbulent kinetic energy (TKE) is taken into account in the approximate HLLC Riemann solver. The Euler equations are supplemented with a hyperbolic equation for TKE, and turbulent pressure is taken into account in the momentum and energy balance equations. The Jacobian of this system of equations and its eigenvalues are found, which are used to modify the HLLC solver. The validity of TKE allowance in the modified HLLC Riemann solver is verified by solving Sod’s problem. It is shown that the scheme is unstable at high turbulent pressure if turbulence is ignored in the computation of characteristic velocities.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Turbulent Kinetic Energy in an Approximate Riemann Solver\",\"authors\":\"M. I. Boldyrev\",\"doi\":\"10.1134/s0965542524700532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>Turbulent kinetic energy (TKE) is taken into account in the approximate HLLC Riemann solver. The Euler equations are supplemented with a hyperbolic equation for TKE, and turbulent pressure is taken into account in the momentum and energy balance equations. The Jacobian of this system of equations and its eigenvalues are found, which are used to modify the HLLC solver. The validity of TKE allowance in the modified HLLC Riemann solver is verified by solving Sod’s problem. It is shown that the scheme is unstable at high turbulent pressure if turbulence is ignored in the computation of characteristic velocities.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s0965542524700532\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0965542524700532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要近似 HLLC 黎曼求解器考虑了湍流动能(TKE)。在欧拉方程中补充了一个关于 TKE 的双曲方程,动量和能量平衡方程中考虑了湍流压力。找到了该方程组的雅各布及其特征值,用于修改 HLLC 求解器。通过求解索德问题,验证了修改后的 HLLC 黎曼求解器中 TKE 津贴的有效性。结果表明,如果在计算特征速度时忽略湍流,则该方案在高湍流压力下不稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Turbulent Kinetic Energy in an Approximate Riemann Solver

分享
查看原文
Turbulent Kinetic Energy in an Approximate Riemann Solver

Abstract

Turbulent kinetic energy (TKE) is taken into account in the approximate HLLC Riemann solver. The Euler equations are supplemented with a hyperbolic equation for TKE, and turbulent pressure is taken into account in the momentum and energy balance equations. The Jacobian of this system of equations and its eigenvalues are found, which are used to modify the HLLC solver. The validity of TKE allowance in the modified HLLC Riemann solver is verified by solving Sod’s problem. It is shown that the scheme is unstable at high turbulent pressure if turbulence is ignored in the computation of characteristic velocities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信