{"title":"岛屿面积和饮食可预测西北太平洋群岛蝙蝠的多样性和分布情况","authors":"Rochelle M Kelly, Sharlene E Santana","doi":"10.1093/jmammal/gyae073","DOIUrl":null,"url":null,"abstract":"The island biogeography theory predicts that species richness in islands and island-like systems is the ultimate result of island isolation and area. Species with high dispersal capabilities are predicted to be less affected by these factors because of their capacity to move more efficiently between islands or habitats, and here we test this idea in bats, the only mammals capable of flight. We conducted mist net and acoustic surveys across 21 islands in the San Juan Archipelago (Washington State, United States) and adjacent northwest mainland to: (i) investigate the effects of island area, distance from mainland, and habitat on bat diversity; and (ii) evaluate whether differences in morphological (body mass, forearm length, wing loading) and ecological (dietary niche breadth, foraging guild) traits among species influence their prevalence across islands. We found that island size strongly influenced patterns of species richness, with larger islands having a greater number of bat species. However, neither island distance from mainland nor any measure of habitat availability was a significant predictor of species richness at the scale of this study. Additionally, we found that dietary niche breadth, as opposed to any morphological trait, best predicted the prevalence of species across the islands. Our results suggest that species with more specialized diets may be more vulnerable to habitat fragmentation, and provide insight into how geographic and ecological factors affect the diversity of insular bat communities, adding to growing knowledge about the role of species traits as mediators of their responses to large-scale landscape structure.","PeriodicalId":50157,"journal":{"name":"Journal of Mammalogy","volume":"340 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Island area and diet predict diversity and distribution of bats in a Pacific Northwest archipelago\",\"authors\":\"Rochelle M Kelly, Sharlene E Santana\",\"doi\":\"10.1093/jmammal/gyae073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The island biogeography theory predicts that species richness in islands and island-like systems is the ultimate result of island isolation and area. Species with high dispersal capabilities are predicted to be less affected by these factors because of their capacity to move more efficiently between islands or habitats, and here we test this idea in bats, the only mammals capable of flight. We conducted mist net and acoustic surveys across 21 islands in the San Juan Archipelago (Washington State, United States) and adjacent northwest mainland to: (i) investigate the effects of island area, distance from mainland, and habitat on bat diversity; and (ii) evaluate whether differences in morphological (body mass, forearm length, wing loading) and ecological (dietary niche breadth, foraging guild) traits among species influence their prevalence across islands. We found that island size strongly influenced patterns of species richness, with larger islands having a greater number of bat species. However, neither island distance from mainland nor any measure of habitat availability was a significant predictor of species richness at the scale of this study. Additionally, we found that dietary niche breadth, as opposed to any morphological trait, best predicted the prevalence of species across the islands. Our results suggest that species with more specialized diets may be more vulnerable to habitat fragmentation, and provide insight into how geographic and ecological factors affect the diversity of insular bat communities, adding to growing knowledge about the role of species traits as mediators of their responses to large-scale landscape structure.\",\"PeriodicalId\":50157,\"journal\":{\"name\":\"Journal of Mammalogy\",\"volume\":\"340 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mammalogy\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/jmammal/gyae073\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ZOOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mammalogy","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jmammal/gyae073","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ZOOLOGY","Score":null,"Total":0}
Island area and diet predict diversity and distribution of bats in a Pacific Northwest archipelago
The island biogeography theory predicts that species richness in islands and island-like systems is the ultimate result of island isolation and area. Species with high dispersal capabilities are predicted to be less affected by these factors because of their capacity to move more efficiently between islands or habitats, and here we test this idea in bats, the only mammals capable of flight. We conducted mist net and acoustic surveys across 21 islands in the San Juan Archipelago (Washington State, United States) and adjacent northwest mainland to: (i) investigate the effects of island area, distance from mainland, and habitat on bat diversity; and (ii) evaluate whether differences in morphological (body mass, forearm length, wing loading) and ecological (dietary niche breadth, foraging guild) traits among species influence their prevalence across islands. We found that island size strongly influenced patterns of species richness, with larger islands having a greater number of bat species. However, neither island distance from mainland nor any measure of habitat availability was a significant predictor of species richness at the scale of this study. Additionally, we found that dietary niche breadth, as opposed to any morphological trait, best predicted the prevalence of species across the islands. Our results suggest that species with more specialized diets may be more vulnerable to habitat fragmentation, and provide insight into how geographic and ecological factors affect the diversity of insular bat communities, adding to growing knowledge about the role of species traits as mediators of their responses to large-scale landscape structure.