关于正三角形区分图

IF 2.6 3区 数学
Dragan Stevanović, Mohammad Ghebleh, Gilles Caporossi, Ambat Vijayakumar, Sanja Stevanović
{"title":"关于正三角形区分图","authors":"Dragan Stevanović, Mohammad Ghebleh, Gilles Caporossi, Ambat Vijayakumar, Sanja Stevanović","doi":"10.1007/s40314-024-02854-9","DOIUrl":null,"url":null,"abstract":"<p>The triangle-degree of a vertex <i>v</i> of a simple graph <i>G</i> is the number of triangles in <i>G</i> that contain <i>v</i>. A simple graph is triangle-distinct if all its vertices have distinct triangle-degrees. Berikkyzy et al. [Discrete Math. 347 (2024) 113695] recently asked whether there exists a regular graph that is triangle-distinct. Here we first showcase the examples of regular, triangle-distinct graphs, and then show that for every natural number <i>k</i> there exists a family of <span>\\(2^k\\)</span> regular triangle-distinct graphs, all having the same order and size.</p>","PeriodicalId":51278,"journal":{"name":"Computational and Applied Mathematics","volume":"4 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On regular triangle-distinct graphs\",\"authors\":\"Dragan Stevanović, Mohammad Ghebleh, Gilles Caporossi, Ambat Vijayakumar, Sanja Stevanović\",\"doi\":\"10.1007/s40314-024-02854-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The triangle-degree of a vertex <i>v</i> of a simple graph <i>G</i> is the number of triangles in <i>G</i> that contain <i>v</i>. A simple graph is triangle-distinct if all its vertices have distinct triangle-degrees. Berikkyzy et al. [Discrete Math. 347 (2024) 113695] recently asked whether there exists a regular graph that is triangle-distinct. Here we first showcase the examples of regular, triangle-distinct graphs, and then show that for every natural number <i>k</i> there exists a family of <span>\\\\(2^k\\\\)</span> regular triangle-distinct graphs, all having the same order and size.</p>\",\"PeriodicalId\":51278,\"journal\":{\"name\":\"Computational and Applied Mathematics\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s40314-024-02854-9\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40314-024-02854-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

简单图 G 的顶点 v 的三角形度是 G 中包含 v 的三角形的数目。如果一个简单图的所有顶点都有不同的三角形度,那么这个图就是三角形模糊图。Berikkyzy 等人[Discrete Math. 347 (2024) 113695]最近提出了一个问题:是否存在三角形不明显的正则图?在这里,我们首先展示了正则、三角形不明显图的例子,然后证明对于每个自然数 k,都存在一个 \(2^k\) 正则三角形不明显图的族,它们都具有相同的阶数和大小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On regular triangle-distinct graphs

On regular triangle-distinct graphs

The triangle-degree of a vertex v of a simple graph G is the number of triangles in G that contain v. A simple graph is triangle-distinct if all its vertices have distinct triangle-degrees. Berikkyzy et al. [Discrete Math. 347 (2024) 113695] recently asked whether there exists a regular graph that is triangle-distinct. Here we first showcase the examples of regular, triangle-distinct graphs, and then show that for every natural number k there exists a family of \(2^k\) regular triangle-distinct graphs, all having the same order and size.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
11.50%
发文量
352
期刊介绍: Computational & Applied Mathematics began to be published in 1981. This journal was conceived as the main scientific publication of SBMAC (Brazilian Society of Computational and Applied Mathematics). The objective of the journal is the publication of original research in Applied and Computational Mathematics, with interfaces in Physics, Engineering, Chemistry, Biology, Operations Research, Statistics, Social Sciences and Economy. The journal has the usual quality standards of scientific international journals and we aim high level of contributions in terms of originality, depth and relevance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信