国家队足球的成功因素:对 2020 年欧洲杯的分析

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Vincent Renner, Konstantin Görgen, Alexander Woll, Hagen Wäsche, Melanie Schienle
{"title":"国家队足球的成功因素:对 2020 年欧洲杯的分析","authors":"Vincent Renner, Konstantin Görgen, Alexander Woll, Hagen Wäsche, Melanie Schienle","doi":"10.1515/jqas-2023-0026","DOIUrl":null,"url":null,"abstract":"Identifying success factors in football is of sporting and economic interest. However, research in this field for national teams and their competitions is rare despite the popularity of teams and events. Therefore, we analyze data for the UEFA EURO 2020 and, for comparison purposes, the previous tournament in 2016. To mitigate the challenges of perceived multicollinearity and a small sample size, and to identify the relevant variables, we apply the ‘LASSO Cross-fitted Stability-Selection’ algorithm. This approach involves iterative splitting of data, with variables chosen via a ‘least absolute shrinkage and selection operator’ (LASSO) model (Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. <jats:italic>J. Roy. Stat. Soc. B</jats:italic> 58: 267–288) on one half of the observations, while coefficients are estimated on the other half. Subsequently, we inspect the frequency of selection and stability of coefficient estimation for each variable over the repeated samples to identify factors as relevant. By that, we are able to differentiate generally valid success factors such as the market value ratio from on-field variables whose importance is tournament-dependent, e.g. the tackles attempted. As the latter is connected to a team’s tactics, we conclude that their observed relevance is correlated to the results of the linked playing style in the specific tournaments. We also show the changing effect of these playing-styles on success across tournaments.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Success factors in national team football: an analysis of the UEFA EURO 2020\",\"authors\":\"Vincent Renner, Konstantin Görgen, Alexander Woll, Hagen Wäsche, Melanie Schienle\",\"doi\":\"10.1515/jqas-2023-0026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Identifying success factors in football is of sporting and economic interest. However, research in this field for national teams and their competitions is rare despite the popularity of teams and events. Therefore, we analyze data for the UEFA EURO 2020 and, for comparison purposes, the previous tournament in 2016. To mitigate the challenges of perceived multicollinearity and a small sample size, and to identify the relevant variables, we apply the ‘LASSO Cross-fitted Stability-Selection’ algorithm. This approach involves iterative splitting of data, with variables chosen via a ‘least absolute shrinkage and selection operator’ (LASSO) model (Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. <jats:italic>J. Roy. Stat. Soc. B</jats:italic> 58: 267–288) on one half of the observations, while coefficients are estimated on the other half. Subsequently, we inspect the frequency of selection and stability of coefficient estimation for each variable over the repeated samples to identify factors as relevant. By that, we are able to differentiate generally valid success factors such as the market value ratio from on-field variables whose importance is tournament-dependent, e.g. the tackles attempted. As the latter is connected to a team’s tactics, we conclude that their observed relevance is correlated to the results of the linked playing style in the specific tournaments. We also show the changing effect of these playing-styles on success across tournaments.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jqas-2023-0026\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jqas-2023-0026","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

确定足球运动的成功因素具有体育和经济意义。然而,尽管球队和赛事很受欢迎,但针对国家队及其赛事的研究却很少见。因此,我们分析了 2020 年欧洲杯的数据,并与 2016 年的上届赛事进行比较。为了减轻多重共线性和样本量较小带来的挑战,并确定相关变量,我们采用了 "LASSO 交叉拟合稳定性选择 "算法。这种方法涉及数据的迭代分割,通过 "最小绝对收缩和选择算子"(LASSO)模型选择变量(Tibshirani, R. (1996)。Regression shrinkage and selection via the lasso.J. Roy.J. Roy.Soc. B 58: 267-288),而系数则是在另一半观测值上估算的。随后,我们检查重复样本中每个变量的选择频率和系数估计的稳定性,以确定相关因素。这样,我们就能将市值比等普遍有效的成功因素与场上变量(其重要性取决于赛事)(如拦截成功率)区分开来。由于后者与球队的战术相关,我们得出结论,观察到的相关性与特定赛事中相关打法的结果相关。我们还展示了这些打法在不同赛事中对成功的影响变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Success factors in national team football: an analysis of the UEFA EURO 2020
Identifying success factors in football is of sporting and economic interest. However, research in this field for national teams and their competitions is rare despite the popularity of teams and events. Therefore, we analyze data for the UEFA EURO 2020 and, for comparison purposes, the previous tournament in 2016. To mitigate the challenges of perceived multicollinearity and a small sample size, and to identify the relevant variables, we apply the ‘LASSO Cross-fitted Stability-Selection’ algorithm. This approach involves iterative splitting of data, with variables chosen via a ‘least absolute shrinkage and selection operator’ (LASSO) model (Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. J. Roy. Stat. Soc. B 58: 267–288) on one half of the observations, while coefficients are estimated on the other half. Subsequently, we inspect the frequency of selection and stability of coefficient estimation for each variable over the repeated samples to identify factors as relevant. By that, we are able to differentiate generally valid success factors such as the market value ratio from on-field variables whose importance is tournament-dependent, e.g. the tackles attempted. As the latter is connected to a team’s tactics, we conclude that their observed relevance is correlated to the results of the linked playing style in the specific tournaments. We also show the changing effect of these playing-styles on success across tournaments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信