里兹空间上的多项式迭代方程

IF 0.8 3区 数学 Q2 MATHEMATICS
Chaitanya Gopalakrishna, Weinian Zhang
{"title":"里兹空间上的多项式迭代方程","authors":"Chaitanya Gopalakrishna, Weinian Zhang","doi":"10.1007/s11117-024-01072-1","DOIUrl":null,"url":null,"abstract":"<p>In this paper we investigate the polynomial-like iterative equation on Riesz spaces. Since a Riesz space does not need to have a metric space structure, neither the Schauder fixed point theorem nor the Banach fixed point theorem is available. Using the Knaster–Tarski fixed point theorem, we first obtain the existence and uniqueness of order-preserving solutions on convex complete sublattices of Riesz spaces. Then, restricting to <span>\\(\\mathbb {R}\\)</span> and <span>\\(\\mathbb {R}^n\\)</span>, special cases of Riesz space, we obtain semi-continuous solutions and integrable solutions, respectively. Finally, we present more special cases of Riesz space in which solutions to the iterative equation can be discussed.\n</p>","PeriodicalId":54596,"journal":{"name":"Positivity","volume":"53 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polynomial-like iterative equation on Riesz spaces\",\"authors\":\"Chaitanya Gopalakrishna, Weinian Zhang\",\"doi\":\"10.1007/s11117-024-01072-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper we investigate the polynomial-like iterative equation on Riesz spaces. Since a Riesz space does not need to have a metric space structure, neither the Schauder fixed point theorem nor the Banach fixed point theorem is available. Using the Knaster–Tarski fixed point theorem, we first obtain the existence and uniqueness of order-preserving solutions on convex complete sublattices of Riesz spaces. Then, restricting to <span>\\\\(\\\\mathbb {R}\\\\)</span> and <span>\\\\(\\\\mathbb {R}^n\\\\)</span>, special cases of Riesz space, we obtain semi-continuous solutions and integrable solutions, respectively. Finally, we present more special cases of Riesz space in which solutions to the iterative equation can be discussed.\\n</p>\",\"PeriodicalId\":54596,\"journal\":{\"name\":\"Positivity\",\"volume\":\"53 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Positivity\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11117-024-01072-1\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Positivity","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11117-024-01072-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了 Riesz 空间上的类多项式迭代方程。由于 Riesz 空间不需要有度量空间结构,因此既没有 Schauder 定点定理,也没有 Banach 定点定理。利用 Knaster-Tarski 定点定理,我们首先得到了 Riesz 空间凸完整子网格上保序解的存在性和唯一性。然后,局限于 Riesz 空间的特例 \(\mathbb {R}\) 和 \(\mathbb {R}^n\) ,我们分别得到了半连续解和可积分解。最后,我们提出了里兹空间的更多特例,在这些特例中可以讨论迭代方程的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Polynomial-like iterative equation on Riesz spaces

In this paper we investigate the polynomial-like iterative equation on Riesz spaces. Since a Riesz space does not need to have a metric space structure, neither the Schauder fixed point theorem nor the Banach fixed point theorem is available. Using the Knaster–Tarski fixed point theorem, we first obtain the existence and uniqueness of order-preserving solutions on convex complete sublattices of Riesz spaces. Then, restricting to \(\mathbb {R}\) and \(\mathbb {R}^n\), special cases of Riesz space, we obtain semi-continuous solutions and integrable solutions, respectively. Finally, we present more special cases of Riesz space in which solutions to the iterative equation can be discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Positivity
Positivity 数学-数学
CiteScore
1.80
自引率
10.00%
发文量
88
审稿时长
>12 weeks
期刊介绍: The purpose of Positivity is to provide an outlet for high quality original research in all areas of analysis and its applications to other disciplines having a clear and substantive link to the general theme of positivity. Specifically, articles that illustrate applications of positivity to other disciplines - including but not limited to - economics, engineering, life sciences, physics and statistical decision theory are welcome. The scope of Positivity is to publish original papers in all areas of mathematics and its applications that are influenced by positivity concepts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信