{"title":"退化 SDE 的熵估计及其在非线性动力学福克-普朗克方程中的应用","authors":"Zhongmin Qian, Panpan Ren, Feng-Yu Wang","doi":"10.1137/24m1634473","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Mathematical Analysis, Volume 56, Issue 4, Page 5330-5349, August 2024. <br/> Abstract. The relative entropy for two different degenerate diffusion processes is estimated by using the Wasserstein distance of initial distributions and the difference between coefficients. As applications, the entropy-cost inequality and exponential ergodicity in entropy are derived for distribution dependent stochastic Hamiltonian systems associated with nonlinear kinetic Fokker–Planck equations.","PeriodicalId":51150,"journal":{"name":"SIAM Journal on Mathematical Analysis","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Entropy Estimate for Degenerate SDEs with Applications to Nonlinear Kinetic Fokker–Planck Equations\",\"authors\":\"Zhongmin Qian, Panpan Ren, Feng-Yu Wang\",\"doi\":\"10.1137/24m1634473\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Mathematical Analysis, Volume 56, Issue 4, Page 5330-5349, August 2024. <br/> Abstract. The relative entropy for two different degenerate diffusion processes is estimated by using the Wasserstein distance of initial distributions and the difference between coefficients. As applications, the entropy-cost inequality and exponential ergodicity in entropy are derived for distribution dependent stochastic Hamiltonian systems associated with nonlinear kinetic Fokker–Planck equations.\",\"PeriodicalId\":51150,\"journal\":{\"name\":\"SIAM Journal on Mathematical Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Mathematical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/24m1634473\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Mathematical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/24m1634473","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Entropy Estimate for Degenerate SDEs with Applications to Nonlinear Kinetic Fokker–Planck Equations
SIAM Journal on Mathematical Analysis, Volume 56, Issue 4, Page 5330-5349, August 2024. Abstract. The relative entropy for two different degenerate diffusion processes is estimated by using the Wasserstein distance of initial distributions and the difference between coefficients. As applications, the entropy-cost inequality and exponential ergodicity in entropy are derived for distribution dependent stochastic Hamiltonian systems associated with nonlinear kinetic Fokker–Planck equations.
期刊介绍:
SIAM Journal on Mathematical Analysis (SIMA) features research articles of the highest quality employing innovative analytical techniques to treat problems in the natural sciences. Every paper has content that is primarily analytical and that employs mathematical methods in such areas as partial differential equations, the calculus of variations, functional analysis, approximation theory, harmonic or wavelet analysis, or dynamical systems. Additionally, every paper relates to a model for natural phenomena in such areas as fluid mechanics, materials science, quantum mechanics, biology, mathematical physics, or to the computational analysis of such phenomena.
Submission of a manuscript to a SIAM journal is representation by the author that the manuscript has not been published or submitted simultaneously for publication elsewhere.
Typical papers for SIMA do not exceed 35 journal pages. Substantial deviations from this page limit require that the referees, editor, and editor-in-chief be convinced that the increased length is both required by the subject matter and justified by the quality of the paper.