Apostolos I. Rikos;Andreas Grammenos;Evangelia Kalyvianaki;Christoforos N. Hadjicostis;Themistoklis Charalambous;Karl H. Johansson
{"title":"二次成本函数的分布式优化与量化通信和有限时间收敛","authors":"Apostolos I. Rikos;Andreas Grammenos;Evangelia Kalyvianaki;Christoforos N. Hadjicostis;Themistoklis Charalambous;Karl H. Johansson","doi":"10.1109/TCNS.2024.3431413","DOIUrl":null,"url":null,"abstract":"In this article, we propose two distributed iterative algorithms that can be used to solve the distributed optimization problem for quadratic local cost functions over large-scale networks in finite time. The first algorithm exhibits synchronous operation while the second one exhibits asynchronous operation. Both algorithms operate exclusively with quantized values. This means that the information stored, processed, and exchanged between neighboring nodes is subject to deterministic uniform quantization. The algorithms rely on event-driven updates in order to reduce energy consumption, communication bandwidth, network congestion, and/or processor usage. Finally, once the algorithms converge, nodes distributively terminate their operation. We prove that our algorithms converge in a finite number of iterations to the exact optimal solution depending on the quantization level, and we present applications of our algorithms to, first, optimal task scheduling for data centers, and second, global model aggregation for distributed federated learning. We provide simulations of these applications to illustrate the operation, performance, and advantages of the proposed algorithms. In addition, it is shown that our proposed algorithms compare favorably to algorithms in the current literature.","PeriodicalId":56023,"journal":{"name":"IEEE Transactions on Control of Network Systems","volume":"12 1","pages":"930-942"},"PeriodicalIF":4.0000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10605038","citationCount":"0","resultStr":"{\"title\":\"Distributed Optimization for Quadratic Cost Functions With Quantized Communication and Finite-Time Convergence\",\"authors\":\"Apostolos I. Rikos;Andreas Grammenos;Evangelia Kalyvianaki;Christoforos N. Hadjicostis;Themistoklis Charalambous;Karl H. Johansson\",\"doi\":\"10.1109/TCNS.2024.3431413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we propose two distributed iterative algorithms that can be used to solve the distributed optimization problem for quadratic local cost functions over large-scale networks in finite time. The first algorithm exhibits synchronous operation while the second one exhibits asynchronous operation. Both algorithms operate exclusively with quantized values. This means that the information stored, processed, and exchanged between neighboring nodes is subject to deterministic uniform quantization. The algorithms rely on event-driven updates in order to reduce energy consumption, communication bandwidth, network congestion, and/or processor usage. Finally, once the algorithms converge, nodes distributively terminate their operation. We prove that our algorithms converge in a finite number of iterations to the exact optimal solution depending on the quantization level, and we present applications of our algorithms to, first, optimal task scheduling for data centers, and second, global model aggregation for distributed federated learning. We provide simulations of these applications to illustrate the operation, performance, and advantages of the proposed algorithms. In addition, it is shown that our proposed algorithms compare favorably to algorithms in the current literature.\",\"PeriodicalId\":56023,\"journal\":{\"name\":\"IEEE Transactions on Control of Network Systems\",\"volume\":\"12 1\",\"pages\":\"930-942\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10605038\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Control of Network Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10605038/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Control of Network Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10605038/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Distributed Optimization for Quadratic Cost Functions With Quantized Communication and Finite-Time Convergence
In this article, we propose two distributed iterative algorithms that can be used to solve the distributed optimization problem for quadratic local cost functions over large-scale networks in finite time. The first algorithm exhibits synchronous operation while the second one exhibits asynchronous operation. Both algorithms operate exclusively with quantized values. This means that the information stored, processed, and exchanged between neighboring nodes is subject to deterministic uniform quantization. The algorithms rely on event-driven updates in order to reduce energy consumption, communication bandwidth, network congestion, and/or processor usage. Finally, once the algorithms converge, nodes distributively terminate their operation. We prove that our algorithms converge in a finite number of iterations to the exact optimal solution depending on the quantization level, and we present applications of our algorithms to, first, optimal task scheduling for data centers, and second, global model aggregation for distributed federated learning. We provide simulations of these applications to illustrate the operation, performance, and advantages of the proposed algorithms. In addition, it is shown that our proposed algorithms compare favorably to algorithms in the current literature.
期刊介绍:
The IEEE Transactions on Control of Network Systems is committed to the timely publication of high-impact papers at the intersection of control systems and network science. In particular, the journal addresses research on the analysis, design and implementation of networked control systems, as well as control over networks. Relevant work includes the full spectrum from basic research on control systems to the design of engineering solutions for automatic control of, and over, networks. The topics covered by this journal include: Coordinated control and estimation over networks, Control and computation over sensor networks, Control under communication constraints, Control and performance analysis issues that arise in the dynamics of networks used in application areas such as communications, computers, transportation, manufacturing, Web ranking and aggregation, social networks, biology, power systems, economics, Synchronization of activities across a controlled network, Stability analysis of controlled networks, Analysis of networks as hybrid dynamical systems.