普利斯特里对偶性与循环动力学表征

William Kalies, Robert Vandervorst
{"title":"普利斯特里对偶性与循环动力学表征","authors":"William Kalies, Robert Vandervorst","doi":"arxiv-2407.14359","DOIUrl":null,"url":null,"abstract":"For an arbitrary dynamical system there is a strong relationship between\nglobal dynamics and the order structure of an appropriately constructed\nPriestley space. This connection provides an order-theoretic framework for\nstudying global dynamics. In the classical setting, the chain recurrent set,\nintroduced by C. Conley, is an example of an ordered Stone space or Priestley\nspace. Priestley duality can be applied in the setting of dynamics on arbitrary\ntopological spaces and yields a notion of Hausdorff compactification of the\n(chain) recurrent set.","PeriodicalId":501314,"journal":{"name":"arXiv - MATH - General Topology","volume":"54 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Priestley duality and representations of recurrent dynamics\",\"authors\":\"William Kalies, Robert Vandervorst\",\"doi\":\"arxiv-2407.14359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For an arbitrary dynamical system there is a strong relationship between\\nglobal dynamics and the order structure of an appropriately constructed\\nPriestley space. This connection provides an order-theoretic framework for\\nstudying global dynamics. In the classical setting, the chain recurrent set,\\nintroduced by C. Conley, is an example of an ordered Stone space or Priestley\\nspace. Priestley duality can be applied in the setting of dynamics on arbitrary\\ntopological spaces and yields a notion of Hausdorff compactification of the\\n(chain) recurrent set.\",\"PeriodicalId\":501314,\"journal\":{\"name\":\"arXiv - MATH - General Topology\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - General Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.14359\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - General Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.14359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于任意动力学系统而言,全局动力学与适当构建的普里斯特里空间的阶次结构之间存在紧密联系。这种联系为研究全局动力学提供了一个秩理论框架。在经典环境中,康利(C. Conley)提出的链式循环集是有序斯通空间或普里斯特利空间的一个例子。普里斯特利对偶性可以应用于任意拓扑空间的动力学环境,并产生了(链)循环集的豪斯多夫紧凑化概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Priestley duality and representations of recurrent dynamics
For an arbitrary dynamical system there is a strong relationship between global dynamics and the order structure of an appropriately constructed Priestley space. This connection provides an order-theoretic framework for studying global dynamics. In the classical setting, the chain recurrent set, introduced by C. Conley, is an example of an ordered Stone space or Priestley space. Priestley duality can be applied in the setting of dynamics on arbitrary topological spaces and yields a notion of Hausdorff compactification of the (chain) recurrent set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信