埃塔函数的积分表示法和分数微积分

IF 1.7 3区 数学 Q2 MATHEMATICS, APPLIED
Salameh Sedaghat, Francisco Marcellán
{"title":"埃塔函数的积分表示法和分数微积分","authors":"Salameh Sedaghat, Francisco Marcellán","doi":"10.1007/s11075-024-01885-x","DOIUrl":null,"url":null,"abstract":"<p>In this contribution we deal with Eta functions and their representations as fractional derivatives and fractional integrals. A class of fractional Sturm-Liouville eigenvalue problems is studied. The analytic representation of their eigensolutions is pointed out as well as the orthogonality of the corresponding eigenfunctions.</p>","PeriodicalId":54709,"journal":{"name":"Numerical Algorithms","volume":"40 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integral representations of Eta functions and fractional calculus\",\"authors\":\"Salameh Sedaghat, Francisco Marcellán\",\"doi\":\"10.1007/s11075-024-01885-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this contribution we deal with Eta functions and their representations as fractional derivatives and fractional integrals. A class of fractional Sturm-Liouville eigenvalue problems is studied. The analytic representation of their eigensolutions is pointed out as well as the orthogonality of the corresponding eigenfunctions.</p>\",\"PeriodicalId\":54709,\"journal\":{\"name\":\"Numerical Algorithms\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Algorithms\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11075-024-01885-x\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Algorithms","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11075-024-01885-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在这篇论文中,我们讨论了 Eta 函数及其作为分数导数和分数积分的表示形式。我们研究了一类分数 Sturm-Liouville 特征值问题。指出了其特征解的解析表示以及相应特征函数的正交性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Integral representations of Eta functions and fractional calculus

Integral representations of Eta functions and fractional calculus

In this contribution we deal with Eta functions and their representations as fractional derivatives and fractional integrals. A class of fractional Sturm-Liouville eigenvalue problems is studied. The analytic representation of their eigensolutions is pointed out as well as the orthogonality of the corresponding eigenfunctions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Numerical Algorithms
Numerical Algorithms 数学-应用数学
CiteScore
4.00
自引率
9.50%
发文量
201
审稿时长
9 months
期刊介绍: The journal Numerical Algorithms is devoted to numerical algorithms. It publishes original and review papers on all the aspects of numerical algorithms: new algorithms, theoretical results, implementation, numerical stability, complexity, parallel computing, subroutines, and applications. Papers on computer algebra related to obtaining numerical results will also be considered. It is intended to publish only high quality papers containing material not published elsewhere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信