Mirjeta Pasha, Silvia Gazzola, Connor Sanderford, Ugochukwu O. Ugwu
{"title":"TRIPs-Py:Python 中的逆问题正则化技术","authors":"Mirjeta Pasha, Silvia Gazzola, Connor Sanderford, Ugochukwu O. Ugwu","doi":"10.1007/s11075-024-01878-w","DOIUrl":null,"url":null,"abstract":"<p>In this paper we describe TRIPs-Py, a new Python package of linear discrete inverse problems solvers and test problems. The goal of the package is two-fold: 1) to provide tools for solving small and large-scale inverse problems, and 2) to introduce test problems arising from a wide range of applications. The solvers available in TRIPs-Py include direct regularization methods (such as truncated singular value decomposition and Tikhonov) and iterative regularization techniques (such as Krylov subspace methods and recent solvers for <span>\\(\\ell _p\\)</span>-<span>\\(\\ell _q\\)</span> formulations, which enforce sparse or edge-preserving solutions and handle different noise types). All our solvers have built-in strategies to define the regularization parameter(s). Some of the test problems in TRIPs-Py arise from simulated image deblurring and computerized tomography, while other test problems model real problems in dynamic computerized tomography. Numerical examples are included to illustrate the usage as well as the performance of the described methods on the provided test problems. To the best of our knowledge, TRIPs-Py is the first Python software package of this kind, which may serve both research and didactical purposes.</p>","PeriodicalId":54709,"journal":{"name":"Numerical Algorithms","volume":"40 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TRIPs-Py: Techniques for regularization of inverse problems in python\",\"authors\":\"Mirjeta Pasha, Silvia Gazzola, Connor Sanderford, Ugochukwu O. Ugwu\",\"doi\":\"10.1007/s11075-024-01878-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper we describe TRIPs-Py, a new Python package of linear discrete inverse problems solvers and test problems. The goal of the package is two-fold: 1) to provide tools for solving small and large-scale inverse problems, and 2) to introduce test problems arising from a wide range of applications. The solvers available in TRIPs-Py include direct regularization methods (such as truncated singular value decomposition and Tikhonov) and iterative regularization techniques (such as Krylov subspace methods and recent solvers for <span>\\\\(\\\\ell _p\\\\)</span>-<span>\\\\(\\\\ell _q\\\\)</span> formulations, which enforce sparse or edge-preserving solutions and handle different noise types). All our solvers have built-in strategies to define the regularization parameter(s). Some of the test problems in TRIPs-Py arise from simulated image deblurring and computerized tomography, while other test problems model real problems in dynamic computerized tomography. Numerical examples are included to illustrate the usage as well as the performance of the described methods on the provided test problems. To the best of our knowledge, TRIPs-Py is the first Python software package of this kind, which may serve both research and didactical purposes.</p>\",\"PeriodicalId\":54709,\"journal\":{\"name\":\"Numerical Algorithms\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Algorithms\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11075-024-01878-w\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Algorithms","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11075-024-01878-w","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
TRIPs-Py: Techniques for regularization of inverse problems in python
In this paper we describe TRIPs-Py, a new Python package of linear discrete inverse problems solvers and test problems. The goal of the package is two-fold: 1) to provide tools for solving small and large-scale inverse problems, and 2) to introduce test problems arising from a wide range of applications. The solvers available in TRIPs-Py include direct regularization methods (such as truncated singular value decomposition and Tikhonov) and iterative regularization techniques (such as Krylov subspace methods and recent solvers for \(\ell _p\)-\(\ell _q\) formulations, which enforce sparse or edge-preserving solutions and handle different noise types). All our solvers have built-in strategies to define the regularization parameter(s). Some of the test problems in TRIPs-Py arise from simulated image deblurring and computerized tomography, while other test problems model real problems in dynamic computerized tomography. Numerical examples are included to illustrate the usage as well as the performance of the described methods on the provided test problems. To the best of our knowledge, TRIPs-Py is the first Python software package of this kind, which may serve both research and didactical purposes.
期刊介绍:
The journal Numerical Algorithms is devoted to numerical algorithms. It publishes original and review papers on all the aspects of numerical algorithms: new algorithms, theoretical results, implementation, numerical stability, complexity, parallel computing, subroutines, and applications. Papers on computer algebra related to obtaining numerical results will also be considered. It is intended to publish only high quality papers containing material not published elsewhere.