感知信息时代的联合学习

IF 1.2 3区 计算机科学 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Yin Xu, Ming-Jun Xiao, Chen Wu, Jie Wu, Jin-Rui Zhou, He Sun
{"title":"感知信息时代的联合学习","authors":"Yin Xu, Ming-Jun Xiao, Chen Wu, Jie Wu, Jin-Rui Zhou, He Sun","doi":"10.1007/s11390-024-3914-x","DOIUrl":null,"url":null,"abstract":"<p>Federated learning (FL) is an emerging privacy-preserving distributed computing paradigm, enabling numerous clients to collaboratively train machine learning models without the necessity of transmitting clients’ private datasets to the central server. Unlike most existing research where the local datasets of clients are assumed to be unchanged over time throughout the whole FL process, our study addresses such scenarios in this paper where clients’ datasets need to be updated periodically, and the server can incentivize clients to employ as fresh as possible datasets for local model training. Our primary objective is to design a client selection strategy to minimize the loss of the global model for FL loss within a constrained budget. To this end, we introduce the concept of “Age of Information” (AoI) to quantitatively assess the freshness of local datasets and conduct a theoretical analysis of the convergence bound in our AoI-aware FL system. Based on the convergence bound, we further formulate our problem as a restless multi-armed bandit (RMAB) problem. Next, we relax the RMAB problem and apply the Lagrangian Dual approach to decouple it into multiple subproblems. Finally, we propose a Whittle’s Index Based Client Selection (WICS) algorithm to determine the set of selected clients. In addition, comprehensive simulations substantiate that the proposed algorithm can effectively reduce training loss and enhance the learning accuracy compared with some state-of-the-art methods.</p>","PeriodicalId":50222,"journal":{"name":"Journal of Computer Science and Technology","volume":"29 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Age-of-Information-Aware Federated Learning\",\"authors\":\"Yin Xu, Ming-Jun Xiao, Chen Wu, Jie Wu, Jin-Rui Zhou, He Sun\",\"doi\":\"10.1007/s11390-024-3914-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Federated learning (FL) is an emerging privacy-preserving distributed computing paradigm, enabling numerous clients to collaboratively train machine learning models without the necessity of transmitting clients’ private datasets to the central server. Unlike most existing research where the local datasets of clients are assumed to be unchanged over time throughout the whole FL process, our study addresses such scenarios in this paper where clients’ datasets need to be updated periodically, and the server can incentivize clients to employ as fresh as possible datasets for local model training. Our primary objective is to design a client selection strategy to minimize the loss of the global model for FL loss within a constrained budget. To this end, we introduce the concept of “Age of Information” (AoI) to quantitatively assess the freshness of local datasets and conduct a theoretical analysis of the convergence bound in our AoI-aware FL system. Based on the convergence bound, we further formulate our problem as a restless multi-armed bandit (RMAB) problem. Next, we relax the RMAB problem and apply the Lagrangian Dual approach to decouple it into multiple subproblems. Finally, we propose a Whittle’s Index Based Client Selection (WICS) algorithm to determine the set of selected clients. In addition, comprehensive simulations substantiate that the proposed algorithm can effectively reduce training loss and enhance the learning accuracy compared with some state-of-the-art methods.</p>\",\"PeriodicalId\":50222,\"journal\":{\"name\":\"Journal of Computer Science and Technology\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer Science and Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11390-024-3914-x\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer Science and Technology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11390-024-3914-x","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

联盟学习(FL)是一种新兴的保护隐私的分布式计算范例,它能让众多客户端协作训练机器学习模型,而无需将客户端的私人数据集传输到中央服务器。与大多数现有研究假设客户端的本地数据集在整个 FL 过程中保持不变不同,我们的研究针对的是客户端数据集需要定期更新的情况,服务器可以激励客户端使用尽可能新鲜的数据集进行本地模型训练。我们的主要目标是设计一种客户选择策略,以便在有限的预算内最大限度地减少 FL 损失的全局模型损失。为此,我们引入了 "信息时代"(AoI)的概念来定量评估本地数据集的新鲜度,并对我们的 AoI 感知 FL 系统的收敛边界进行了理论分析。在收敛边界的基础上,我们进一步将问题表述为不安分的多臂强盗(RMAB)问题。接下来,我们放松了 RMAB 问题,并应用拉格朗日二元方法将其解耦为多个子问题。最后,我们提出了一种基于惠特尔指数的客户选择 (WICS) 算法,以确定所选客户的集合。此外,综合模拟证实,与一些最先进的方法相比,所提出的算法能有效减少训练损失,提高学习精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Age-of-Information-Aware Federated Learning

Federated learning (FL) is an emerging privacy-preserving distributed computing paradigm, enabling numerous clients to collaboratively train machine learning models without the necessity of transmitting clients’ private datasets to the central server. Unlike most existing research where the local datasets of clients are assumed to be unchanged over time throughout the whole FL process, our study addresses such scenarios in this paper where clients’ datasets need to be updated periodically, and the server can incentivize clients to employ as fresh as possible datasets for local model training. Our primary objective is to design a client selection strategy to minimize the loss of the global model for FL loss within a constrained budget. To this end, we introduce the concept of “Age of Information” (AoI) to quantitatively assess the freshness of local datasets and conduct a theoretical analysis of the convergence bound in our AoI-aware FL system. Based on the convergence bound, we further formulate our problem as a restless multi-armed bandit (RMAB) problem. Next, we relax the RMAB problem and apply the Lagrangian Dual approach to decouple it into multiple subproblems. Finally, we propose a Whittle’s Index Based Client Selection (WICS) algorithm to determine the set of selected clients. In addition, comprehensive simulations substantiate that the proposed algorithm can effectively reduce training loss and enhance the learning accuracy compared with some state-of-the-art methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computer Science and Technology
Journal of Computer Science and Technology 工程技术-计算机:软件工程
CiteScore
4.00
自引率
0.00%
发文量
2255
审稿时长
9.8 months
期刊介绍: Journal of Computer Science and Technology (JCST), the first English language journal in the computer field published in China, is an international forum for scientists and engineers involved in all aspects of computer science and technology to publish high quality and refereed papers. Papers reporting original research and innovative applications from all parts of the world are welcome. Papers for publication in the journal are selected through rigorous peer review, to ensure originality, timeliness, relevance, and readability. While the journal emphasizes the publication of previously unpublished materials, selected conference papers with exceptional merit that require wider exposure are, at the discretion of the editors, also published, provided they meet the journal''s peer review standards. The journal also seeks clearly written survey and review articles from experts in the field, to promote insightful understanding of the state-of-the-art and technology trends. Topics covered by Journal of Computer Science and Technology include but are not limited to: -Computer Architecture and Systems -Artificial Intelligence and Pattern Recognition -Computer Networks and Distributed Computing -Computer Graphics and Multimedia -Software Systems -Data Management and Data Mining -Theory and Algorithms -Emerging Areas
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信