Yin Xu, Ming-Jun Xiao, Chen Wu, Jie Wu, Jin-Rui Zhou, He Sun
{"title":"感知信息时代的联合学习","authors":"Yin Xu, Ming-Jun Xiao, Chen Wu, Jie Wu, Jin-Rui Zhou, He Sun","doi":"10.1007/s11390-024-3914-x","DOIUrl":null,"url":null,"abstract":"<p>Federated learning (FL) is an emerging privacy-preserving distributed computing paradigm, enabling numerous clients to collaboratively train machine learning models without the necessity of transmitting clients’ private datasets to the central server. Unlike most existing research where the local datasets of clients are assumed to be unchanged over time throughout the whole FL process, our study addresses such scenarios in this paper where clients’ datasets need to be updated periodically, and the server can incentivize clients to employ as fresh as possible datasets for local model training. Our primary objective is to design a client selection strategy to minimize the loss of the global model for FL loss within a constrained budget. To this end, we introduce the concept of “Age of Information” (AoI) to quantitatively assess the freshness of local datasets and conduct a theoretical analysis of the convergence bound in our AoI-aware FL system. Based on the convergence bound, we further formulate our problem as a restless multi-armed bandit (RMAB) problem. Next, we relax the RMAB problem and apply the Lagrangian Dual approach to decouple it into multiple subproblems. Finally, we propose a Whittle’s Index Based Client Selection (WICS) algorithm to determine the set of selected clients. In addition, comprehensive simulations substantiate that the proposed algorithm can effectively reduce training loss and enhance the learning accuracy compared with some state-of-the-art methods.</p>","PeriodicalId":50222,"journal":{"name":"Journal of Computer Science and Technology","volume":"29 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Age-of-Information-Aware Federated Learning\",\"authors\":\"Yin Xu, Ming-Jun Xiao, Chen Wu, Jie Wu, Jin-Rui Zhou, He Sun\",\"doi\":\"10.1007/s11390-024-3914-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Federated learning (FL) is an emerging privacy-preserving distributed computing paradigm, enabling numerous clients to collaboratively train machine learning models without the necessity of transmitting clients’ private datasets to the central server. Unlike most existing research where the local datasets of clients are assumed to be unchanged over time throughout the whole FL process, our study addresses such scenarios in this paper where clients’ datasets need to be updated periodically, and the server can incentivize clients to employ as fresh as possible datasets for local model training. Our primary objective is to design a client selection strategy to minimize the loss of the global model for FL loss within a constrained budget. To this end, we introduce the concept of “Age of Information” (AoI) to quantitatively assess the freshness of local datasets and conduct a theoretical analysis of the convergence bound in our AoI-aware FL system. Based on the convergence bound, we further formulate our problem as a restless multi-armed bandit (RMAB) problem. Next, we relax the RMAB problem and apply the Lagrangian Dual approach to decouple it into multiple subproblems. Finally, we propose a Whittle’s Index Based Client Selection (WICS) algorithm to determine the set of selected clients. In addition, comprehensive simulations substantiate that the proposed algorithm can effectively reduce training loss and enhance the learning accuracy compared with some state-of-the-art methods.</p>\",\"PeriodicalId\":50222,\"journal\":{\"name\":\"Journal of Computer Science and Technology\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer Science and Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11390-024-3914-x\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer Science and Technology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11390-024-3914-x","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Federated learning (FL) is an emerging privacy-preserving distributed computing paradigm, enabling numerous clients to collaboratively train machine learning models without the necessity of transmitting clients’ private datasets to the central server. Unlike most existing research where the local datasets of clients are assumed to be unchanged over time throughout the whole FL process, our study addresses such scenarios in this paper where clients’ datasets need to be updated periodically, and the server can incentivize clients to employ as fresh as possible datasets for local model training. Our primary objective is to design a client selection strategy to minimize the loss of the global model for FL loss within a constrained budget. To this end, we introduce the concept of “Age of Information” (AoI) to quantitatively assess the freshness of local datasets and conduct a theoretical analysis of the convergence bound in our AoI-aware FL system. Based on the convergence bound, we further formulate our problem as a restless multi-armed bandit (RMAB) problem. Next, we relax the RMAB problem and apply the Lagrangian Dual approach to decouple it into multiple subproblems. Finally, we propose a Whittle’s Index Based Client Selection (WICS) algorithm to determine the set of selected clients. In addition, comprehensive simulations substantiate that the proposed algorithm can effectively reduce training loss and enhance the learning accuracy compared with some state-of-the-art methods.
期刊介绍:
Journal of Computer Science and Technology (JCST), the first English language journal in the computer field published in China, is an international forum for scientists and engineers involved in all aspects of computer science and technology to publish high quality and refereed papers. Papers reporting original research and innovative applications from all parts of the world are welcome. Papers for publication in the journal are selected through rigorous peer review, to ensure originality, timeliness, relevance, and readability. While the journal emphasizes the publication of previously unpublished materials, selected conference papers with exceptional merit that require wider exposure are, at the discretion of the editors, also published, provided they meet the journal''s peer review standards. The journal also seeks clearly written survey and review articles from experts in the field, to promote insightful understanding of the state-of-the-art and technology trends.
Topics covered by Journal of Computer Science and Technology include but are not limited to:
-Computer Architecture and Systems
-Artificial Intelligence and Pattern Recognition
-Computer Networks and Distributed Computing
-Computer Graphics and Multimedia
-Software Systems
-Data Management and Data Mining
-Theory and Algorithms
-Emerging Areas