利用放射性碳和基于人工智能的书写风格分析确定古代手稿的年代

Mladen Popović, Maruf A. Dhali, Lambert Schomaker, Johannes van der Plicht, Kaare Lund Rasmussen, Jacopo La Nasa, Ilaria Degano, Maria Perla Colombini, Eibert Tigchelaar
{"title":"利用放射性碳和基于人工智能的书写风格分析确定古代手稿的年代","authors":"Mladen Popović, Maruf A. Dhali, Lambert Schomaker, Johannes van der Plicht, Kaare Lund Rasmussen, Jacopo La Nasa, Ilaria Degano, Maria Perla Colombini, Eibert Tigchelaar","doi":"arxiv-2407.12013","DOIUrl":null,"url":null,"abstract":"Determining the chronology of ancient handwritten manuscripts is essential\nfor reconstructing the evolution of ideas. For the Dead Sea Scrolls, this is\nparticularly important. However, there is an almost complete lack of\ndate-bearing manuscripts evenly distributed across the timeline and written in\nsimilar scripts available for palaeographic comparison. Here, we present Enoch,\na state-of-the-art AI-based date-prediction model, trained on the basis of new\nradiocarbon-dated samples of the scrolls. Enoch uses established\nhandwriting-style descriptors and applies Bayesian ridge regression. The\nchallenge of this study is that the number of radiocarbon-dated manuscripts is\nsmall, while current machine learning requires an abundance of training data.\nWe show that by using combined angular and allographic writing style feature\nvectors and applying Bayesian ridge regression, Enoch could predict the\nradiocarbon-based dates from style, supported by leave-one-out validation, with\nvaried MAEs of 27.9 to 30.7 years relative to the radiocarbon dating. Enoch was\nthen used to estimate the dates of 135 unseen manuscripts, revealing that 79\nper cent of the samples were considered 'realistic' upon palaeographic post-hoc\nevaluation. We present a new chronology of the scrolls. The radiocarbon ranges\nand Enoch's style-based predictions are often older than the traditionally\nassumed palaeographic estimates. In the range of 300-50 BCE, Enoch's date\nprediction provides an improved granularity. The study is in line with current\ndevelopments in multimodal machine-learning techniques, and the methods can be\nused for date prediction in other partially-dated manuscript collections. This\nresearch shows how Enoch's quantitative, probability-based approach can be a\ntool for palaeographers and historians, re-dating ancient Jewish key texts and\ncontributing to current debates on Jewish and Christian origins.","PeriodicalId":501285,"journal":{"name":"arXiv - CS - Digital Libraries","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dating ancient manuscripts using radiocarbon and AI-based writing style analysis\",\"authors\":\"Mladen Popović, Maruf A. Dhali, Lambert Schomaker, Johannes van der Plicht, Kaare Lund Rasmussen, Jacopo La Nasa, Ilaria Degano, Maria Perla Colombini, Eibert Tigchelaar\",\"doi\":\"arxiv-2407.12013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Determining the chronology of ancient handwritten manuscripts is essential\\nfor reconstructing the evolution of ideas. For the Dead Sea Scrolls, this is\\nparticularly important. However, there is an almost complete lack of\\ndate-bearing manuscripts evenly distributed across the timeline and written in\\nsimilar scripts available for palaeographic comparison. Here, we present Enoch,\\na state-of-the-art AI-based date-prediction model, trained on the basis of new\\nradiocarbon-dated samples of the scrolls. Enoch uses established\\nhandwriting-style descriptors and applies Bayesian ridge regression. The\\nchallenge of this study is that the number of radiocarbon-dated manuscripts is\\nsmall, while current machine learning requires an abundance of training data.\\nWe show that by using combined angular and allographic writing style feature\\nvectors and applying Bayesian ridge regression, Enoch could predict the\\nradiocarbon-based dates from style, supported by leave-one-out validation, with\\nvaried MAEs of 27.9 to 30.7 years relative to the radiocarbon dating. Enoch was\\nthen used to estimate the dates of 135 unseen manuscripts, revealing that 79\\nper cent of the samples were considered 'realistic' upon palaeographic post-hoc\\nevaluation. We present a new chronology of the scrolls. The radiocarbon ranges\\nand Enoch's style-based predictions are often older than the traditionally\\nassumed palaeographic estimates. In the range of 300-50 BCE, Enoch's date\\nprediction provides an improved granularity. The study is in line with current\\ndevelopments in multimodal machine-learning techniques, and the methods can be\\nused for date prediction in other partially-dated manuscript collections. This\\nresearch shows how Enoch's quantitative, probability-based approach can be a\\ntool for palaeographers and historians, re-dating ancient Jewish key texts and\\ncontributing to current debates on Jewish and Christian origins.\",\"PeriodicalId\":501285,\"journal\":{\"name\":\"arXiv - CS - Digital Libraries\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Digital Libraries\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.12013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Digital Libraries","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.12013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

确定古代手写手稿的年代对于重建思想的演变至关重要。对于《死海古卷》来说,这一点尤为重要。然而,目前几乎完全缺乏均匀分布在时间轴上、书写文字不同的手稿来进行古文字学比较。在此,我们介绍了基于人工智能的最新日期预测模型 Enoch,该模型是在新的放射碳年代古卷样本基础上训练而成的。Enoch 使用既定的书写风格描述符,并应用贝叶斯脊回归。这项研究面临的挑战是,经过放射性碳测年的手稿数量很少,而目前的机器学习需要大量的训练数据。我们的研究表明,通过使用组合的角度和异体书写风格特征向量,并应用贝叶斯脊回归,Enoch可以根据风格预测基于放射性碳测年的年代,并得到leave-one-out验证的支持,相对于放射性碳测年的最大误差为27.9至30.7年。以诺氏被用来估算 135 份未见手稿的年代,结果显示 79% 的样本在古文字学后评估中被认为是 "符合实际情况 "的。我们提出了卷轴的新年代学。放射性碳范围和伊诺克基于风格的预测往往比传统古文字学的估计要早。在公元前 300-50 年的范围内,伊诺克的日期预测提供了更好的粒度。这项研究与当前多模态机器学习技术的发展相吻合,其方法可用于其他部分年代的手稿收藏的日期预测。这项研究表明,以诺的定量、基于概率的方法可以成为古文字学家和历史学家的工具,重新确定古代犹太教重要典籍的年代,并为当前有关犹太教和基督教起源的争论做出贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dating ancient manuscripts using radiocarbon and AI-based writing style analysis
Determining the chronology of ancient handwritten manuscripts is essential for reconstructing the evolution of ideas. For the Dead Sea Scrolls, this is particularly important. However, there is an almost complete lack of date-bearing manuscripts evenly distributed across the timeline and written in similar scripts available for palaeographic comparison. Here, we present Enoch, a state-of-the-art AI-based date-prediction model, trained on the basis of new radiocarbon-dated samples of the scrolls. Enoch uses established handwriting-style descriptors and applies Bayesian ridge regression. The challenge of this study is that the number of radiocarbon-dated manuscripts is small, while current machine learning requires an abundance of training data. We show that by using combined angular and allographic writing style feature vectors and applying Bayesian ridge regression, Enoch could predict the radiocarbon-based dates from style, supported by leave-one-out validation, with varied MAEs of 27.9 to 30.7 years relative to the radiocarbon dating. Enoch was then used to estimate the dates of 135 unseen manuscripts, revealing that 79 per cent of the samples were considered 'realistic' upon palaeographic post-hoc evaluation. We present a new chronology of the scrolls. The radiocarbon ranges and Enoch's style-based predictions are often older than the traditionally assumed palaeographic estimates. In the range of 300-50 BCE, Enoch's date prediction provides an improved granularity. The study is in line with current developments in multimodal machine-learning techniques, and the methods can be used for date prediction in other partially-dated manuscript collections. This research shows how Enoch's quantitative, probability-based approach can be a tool for palaeographers and historians, re-dating ancient Jewish key texts and contributing to current debates on Jewish and Christian origins.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信