{"title":"利用多点地质统计学对矿脉型金矿床进行地质建模","authors":"Aida Zhexenbayeva , Nasser Madani , Philippe Renard , Julien Straubhaar","doi":"10.1016/j.acags.2024.100177","DOIUrl":null,"url":null,"abstract":"<div><p>Geostatistical cascade modeling of Mineral Resources is challenging in vein-type gold deposits. The narrow shape and long-range features of these auriferous veins, coupled with the paucity of drill-hole data, can complicate the modeling process and make the use of two-point geostatistical algorithms impractical. Instead, multiple-point geostatistics techniques can be a suitable alternative. However, the most challenging part in implementing the MPS is to use a suitable training data set or training image (TI). In this paper, we suggest using the radial basis function algorithm to build a training image and the DeeSse algorithm, one of the multiple-point statistics (MPS) methods, to model two long-range veins in a gold deposit. It is demonstrated that DeeSse can replicate long-range vein features better than plurigaussian simulation techniques when there is a lack of conditioning data. This is shown by several validation processes, such as comparing simulation results with an interpretive geological block model and replicating geological proportions.</p></div>","PeriodicalId":33804,"journal":{"name":"Applied Computing and Geosciences","volume":"23 ","pages":"Article 100177"},"PeriodicalIF":2.6000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590197424000247/pdfft?md5=6267aeb1f34a82ff3e55ae08fe0d7c7d&pid=1-s2.0-S2590197424000247-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Using multiple-point geostatistics for geomodeling of a vein-type gold deposit\",\"authors\":\"Aida Zhexenbayeva , Nasser Madani , Philippe Renard , Julien Straubhaar\",\"doi\":\"10.1016/j.acags.2024.100177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Geostatistical cascade modeling of Mineral Resources is challenging in vein-type gold deposits. The narrow shape and long-range features of these auriferous veins, coupled with the paucity of drill-hole data, can complicate the modeling process and make the use of two-point geostatistical algorithms impractical. Instead, multiple-point geostatistics techniques can be a suitable alternative. However, the most challenging part in implementing the MPS is to use a suitable training data set or training image (TI). In this paper, we suggest using the radial basis function algorithm to build a training image and the DeeSse algorithm, one of the multiple-point statistics (MPS) methods, to model two long-range veins in a gold deposit. It is demonstrated that DeeSse can replicate long-range vein features better than plurigaussian simulation techniques when there is a lack of conditioning data. This is shown by several validation processes, such as comparing simulation results with an interpretive geological block model and replicating geological proportions.</p></div>\",\"PeriodicalId\":33804,\"journal\":{\"name\":\"Applied Computing and Geosciences\",\"volume\":\"23 \",\"pages\":\"Article 100177\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590197424000247/pdfft?md5=6267aeb1f34a82ff3e55ae08fe0d7c7d&pid=1-s2.0-S2590197424000247-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Computing and Geosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590197424000247\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computing and Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590197424000247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Using multiple-point geostatistics for geomodeling of a vein-type gold deposit
Geostatistical cascade modeling of Mineral Resources is challenging in vein-type gold deposits. The narrow shape and long-range features of these auriferous veins, coupled with the paucity of drill-hole data, can complicate the modeling process and make the use of two-point geostatistical algorithms impractical. Instead, multiple-point geostatistics techniques can be a suitable alternative. However, the most challenging part in implementing the MPS is to use a suitable training data set or training image (TI). In this paper, we suggest using the radial basis function algorithm to build a training image and the DeeSse algorithm, one of the multiple-point statistics (MPS) methods, to model two long-range veins in a gold deposit. It is demonstrated that DeeSse can replicate long-range vein features better than plurigaussian simulation techniques when there is a lack of conditioning data. This is shown by several validation processes, such as comparing simulation results with an interpretive geological block model and replicating geological proportions.