胚胎发生过程中分化波活动的分子基础 Bradly Alicea.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Bradly Alicea , Suroush Bastani , Natalie K. Gordon , Susan Crawford-Young , Richard Gordon
{"title":"胚胎发生过程中分化波活动的分子基础 Bradly Alicea.","authors":"Bradly Alicea ,&nbsp;Suroush Bastani ,&nbsp;Natalie K. Gordon ,&nbsp;Susan Crawford-Young ,&nbsp;Richard Gordon","doi":"10.1016/j.biosystems.2024.105272","DOIUrl":null,"url":null,"abstract":"<div><p>As development varies greatly across the tree of life, it may seem difficult to suggest a model that proposes a single mechanism for understanding collective cell behaviors and the coordination of tissue formation. Here we propose a mechanism called differentiation waves, which unify many disparate results involving developmental systems from across the tree of life. We demonstrate how a relatively simple model of differentiation proceeds not from function-related molecular mechanisms, but from so-called differentiation waves. A phenotypic model of differentiation waves is introduced, and its relation to molecular mechanisms is proposed. These waves contribute to a differentiation tree, which is an alternate way of viewing cell lineage and local action of the molecular factors. We construct a model of differentiation wave-related molecular mechanisms (genome, epigenome, and proteome) based on bioinformatic data from the nematode <em>Caenorhabditis elegans</em>. To validate this approach across different modes of development, we evaluate protein expression across different types of development by comparing <em>Caenorhabditis elegans</em> with several model organisms: fruit flies (<em>Drosophila melanogaster</em>), yeast (<em>Saccharomyces cerevisiae</em>), and mouse (<em>Mus musculus</em>). Inspired by gene regulatory networks, two Models of Interactive Contributions (fully-connected MICs and ordered MICs) are used to suggest potential genomic contributions to differentiation wave-related proteins. This, in turn, provides a framework for understanding differentiation and development.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Molecular Basis of Differentiation Wave Activity in Embryogenesis\",\"authors\":\"Bradly Alicea ,&nbsp;Suroush Bastani ,&nbsp;Natalie K. Gordon ,&nbsp;Susan Crawford-Young ,&nbsp;Richard Gordon\",\"doi\":\"10.1016/j.biosystems.2024.105272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>As development varies greatly across the tree of life, it may seem difficult to suggest a model that proposes a single mechanism for understanding collective cell behaviors and the coordination of tissue formation. Here we propose a mechanism called differentiation waves, which unify many disparate results involving developmental systems from across the tree of life. We demonstrate how a relatively simple model of differentiation proceeds not from function-related molecular mechanisms, but from so-called differentiation waves. A phenotypic model of differentiation waves is introduced, and its relation to molecular mechanisms is proposed. These waves contribute to a differentiation tree, which is an alternate way of viewing cell lineage and local action of the molecular factors. We construct a model of differentiation wave-related molecular mechanisms (genome, epigenome, and proteome) based on bioinformatic data from the nematode <em>Caenorhabditis elegans</em>. To validate this approach across different modes of development, we evaluate protein expression across different types of development by comparing <em>Caenorhabditis elegans</em> with several model organisms: fruit flies (<em>Drosophila melanogaster</em>), yeast (<em>Saccharomyces cerevisiae</em>), and mouse (<em>Mus musculus</em>). Inspired by gene regulatory networks, two Models of Interactive Contributions (fully-connected MICs and ordered MICs) are used to suggest potential genomic contributions to differentiation wave-related proteins. This, in turn, provides a framework for understanding differentiation and development.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0303264724001576\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0303264724001576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

由于整个生命树的发育过程千差万别,因此似乎很难提出一个模型,用单一的机制来理解细胞的集体行为和组织形成的协调。在这里,我们提出了一种称为 "分化波"(differentiation waves)的机制,它统一了生命树中涉及发育系统的许多不同结果。我们展示了一个相对简单的分化模型是如何不是从与功能相关的分子机制出发,而是从所谓的分化波出发的。我们介绍了分化波的表型模型,并提出了它与分子机制的关系。这些波促成了分化树,这是观察细胞系和分子因子局部作用的另一种方式。我们根据线虫秀丽隐杆线虫的生物信息数据,构建了一个与分化波相关的分子机制(基因组、表观基因组和蛋白质组)模型。为了在不同的发育模式中验证这种方法,我们将秀丽隐杆线虫与果蝇(Drosophila melanogaster)、酵母(Saccharomyces cerevisiae)和小鼠(Mus musculus)等几种模式生物进行比较,评估不同发育类型中的蛋白质表达。受基因调控网络的启发,两个交互贡献模型(完全连接的 MIC 和有序的 MIC)被用来建议分化波相关蛋白的潜在基因组贡献。这反过来又为理解分化和发育提供了一个框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Molecular Basis of Differentiation Wave Activity in Embryogenesis

As development varies greatly across the tree of life, it may seem difficult to suggest a model that proposes a single mechanism for understanding collective cell behaviors and the coordination of tissue formation. Here we propose a mechanism called differentiation waves, which unify many disparate results involving developmental systems from across the tree of life. We demonstrate how a relatively simple model of differentiation proceeds not from function-related molecular mechanisms, but from so-called differentiation waves. A phenotypic model of differentiation waves is introduced, and its relation to molecular mechanisms is proposed. These waves contribute to a differentiation tree, which is an alternate way of viewing cell lineage and local action of the molecular factors. We construct a model of differentiation wave-related molecular mechanisms (genome, epigenome, and proteome) based on bioinformatic data from the nematode Caenorhabditis elegans. To validate this approach across different modes of development, we evaluate protein expression across different types of development by comparing Caenorhabditis elegans with several model organisms: fruit flies (Drosophila melanogaster), yeast (Saccharomyces cerevisiae), and mouse (Mus musculus). Inspired by gene regulatory networks, two Models of Interactive Contributions (fully-connected MICs and ordered MICs) are used to suggest potential genomic contributions to differentiation wave-related proteins. This, in turn, provides a framework for understanding differentiation and development.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信