{"title":"N- 烷基靛红-3-亚氨基芳香胺衍生物的分子对接和合成及其抗利什曼病和细胞毒活性。","authors":"Farshid Hassanzadeh, Seyed Hossein Hejazi, Elham Jafari, Atefeh Mohammadi Fard, Hojjat Sadeghi-Aliabadi","doi":"10.4103/RPS.RPS_244_22","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and purpose: </strong>Isatin derivatives have excited attention due to their biological attractions, especially, anticancer properties. Isatin analogs such as semaxanib and sunitinib were exposed to tyrosine kinase inhibitory properties. N-substituted isatins were reported to show cytotoxic activity. On the other, the extension of impressive and cost-effective agents against leishmaniasis is necessary in third-world countries. The capability of isatin derivatives to create novel anticancer and anti-leishmanial compounds has been identified in medicinal chemistry research. The current study aimed to synthesize N-alkyl-isatin-3-imino aromatic amine compounds and evaluate their biological effects.</p><p><strong>Experimental approach: </strong>Synthesis started with the formation of 2-chloro-N-phenylacetamide derivatives by the reaction of aniline derivatives with chloroacetyl chloride. N-alkylation of isatin was performed in the presence of K2CO3 in N, N-dimethylformamide. Final products were prepared via the condensation of N-alkyl isatin derivatives with aromatic amines. Cell viability was checked out by using the MTT assay against cancer cells. Final compounds were screened for anti-leishmanial activity. The molecules were docked in the active sites of the epidermal growth factor receptor tyrosine kinase to define the possible interactions.</p><p><strong>Findings/results: </strong>Compounds 5c and 4d with IC<sub>50</sub> value of 50 μΜ showed cytotoxic activity on the MCF-7 cell line. Compound 5b presented anti-leishmanial activity against promastigote form after 48 h (IC<sub>50</sub>:59 μΜ) and 72 h (IC<sub>50</sub>: 41 μΜ) incubations. The highest docking score was -7.33 kcal/mol for compound 4d.</p><p><strong>Conclusions and implications: </strong>The nature of substitution in the N1 region of isatin seems to be able to influence the cytotoxic activity. Based on the obtained results of docking and cytotoxic tests, compound 4d seems to be a good compound for further investigations.</p>","PeriodicalId":21075,"journal":{"name":"Research in Pharmaceutical Sciences","volume":"19 2","pages":"238-250"},"PeriodicalIF":2.1000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11257207/pdf/","citationCount":"0","resultStr":"{\"title\":\"Molecular docking and synthesis of N-alkyl-isatin-3-imino aromatic amine derivatives and their antileishmanial and cytotoxic activities.\",\"authors\":\"Farshid Hassanzadeh, Seyed Hossein Hejazi, Elham Jafari, Atefeh Mohammadi Fard, Hojjat Sadeghi-Aliabadi\",\"doi\":\"10.4103/RPS.RPS_244_22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background and purpose: </strong>Isatin derivatives have excited attention due to their biological attractions, especially, anticancer properties. Isatin analogs such as semaxanib and sunitinib were exposed to tyrosine kinase inhibitory properties. N-substituted isatins were reported to show cytotoxic activity. On the other, the extension of impressive and cost-effective agents against leishmaniasis is necessary in third-world countries. The capability of isatin derivatives to create novel anticancer and anti-leishmanial compounds has been identified in medicinal chemistry research. The current study aimed to synthesize N-alkyl-isatin-3-imino aromatic amine compounds and evaluate their biological effects.</p><p><strong>Experimental approach: </strong>Synthesis started with the formation of 2-chloro-N-phenylacetamide derivatives by the reaction of aniline derivatives with chloroacetyl chloride. N-alkylation of isatin was performed in the presence of K2CO3 in N, N-dimethylformamide. Final products were prepared via the condensation of N-alkyl isatin derivatives with aromatic amines. Cell viability was checked out by using the MTT assay against cancer cells. Final compounds were screened for anti-leishmanial activity. The molecules were docked in the active sites of the epidermal growth factor receptor tyrosine kinase to define the possible interactions.</p><p><strong>Findings/results: </strong>Compounds 5c and 4d with IC<sub>50</sub> value of 50 μΜ showed cytotoxic activity on the MCF-7 cell line. Compound 5b presented anti-leishmanial activity against promastigote form after 48 h (IC<sub>50</sub>:59 μΜ) and 72 h (IC<sub>50</sub>: 41 μΜ) incubations. The highest docking score was -7.33 kcal/mol for compound 4d.</p><p><strong>Conclusions and implications: </strong>The nature of substitution in the N1 region of isatin seems to be able to influence the cytotoxic activity. Based on the obtained results of docking and cytotoxic tests, compound 4d seems to be a good compound for further investigations.</p>\",\"PeriodicalId\":21075,\"journal\":{\"name\":\"Research in Pharmaceutical Sciences\",\"volume\":\"19 2\",\"pages\":\"238-250\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11257207/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research in Pharmaceutical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4103/RPS.RPS_244_22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Pharmaceutical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/RPS.RPS_244_22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Molecular docking and synthesis of N-alkyl-isatin-3-imino aromatic amine derivatives and their antileishmanial and cytotoxic activities.
Background and purpose: Isatin derivatives have excited attention due to their biological attractions, especially, anticancer properties. Isatin analogs such as semaxanib and sunitinib were exposed to tyrosine kinase inhibitory properties. N-substituted isatins were reported to show cytotoxic activity. On the other, the extension of impressive and cost-effective agents against leishmaniasis is necessary in third-world countries. The capability of isatin derivatives to create novel anticancer and anti-leishmanial compounds has been identified in medicinal chemistry research. The current study aimed to synthesize N-alkyl-isatin-3-imino aromatic amine compounds and evaluate their biological effects.
Experimental approach: Synthesis started with the formation of 2-chloro-N-phenylacetamide derivatives by the reaction of aniline derivatives with chloroacetyl chloride. N-alkylation of isatin was performed in the presence of K2CO3 in N, N-dimethylformamide. Final products were prepared via the condensation of N-alkyl isatin derivatives with aromatic amines. Cell viability was checked out by using the MTT assay against cancer cells. Final compounds were screened for anti-leishmanial activity. The molecules were docked in the active sites of the epidermal growth factor receptor tyrosine kinase to define the possible interactions.
Findings/results: Compounds 5c and 4d with IC50 value of 50 μΜ showed cytotoxic activity on the MCF-7 cell line. Compound 5b presented anti-leishmanial activity against promastigote form after 48 h (IC50:59 μΜ) and 72 h (IC50: 41 μΜ) incubations. The highest docking score was -7.33 kcal/mol for compound 4d.
Conclusions and implications: The nature of substitution in the N1 region of isatin seems to be able to influence the cytotoxic activity. Based on the obtained results of docking and cytotoxic tests, compound 4d seems to be a good compound for further investigations.
期刊介绍:
Research in Pharmaceutical Sciences (RPS) is included in Thomson Reuters ESCI Web of Science (searchable at WoS master journal list), indexed with PubMed and PubMed Central and abstracted in the Elsevier Bibliographic Databases. Databases include Scopus, EMBASE, EMCare, EMBiology and Elsevier BIOBASE. It is also indexed in several specialized databases including Scientific Information Database (SID), Google Scholar, Iran Medex, Magiran, Index Copernicus (IC) and Islamic World Science Citation Center (ISC).