Yacine M'Rad;Caecilia Charbonnier;Marcelo Elias de Oliveira;Pauline Coralie Guillemin;Lindsey Alexandra Crowe;Thibaud Kössler;Pierre-Alexandre Poletti;Sana Boudabbous;Alexis Ricoeur;Rares Salomir;Orane Lorton
{"title":"利用粒子群优化技术对腹部热疗专用 MRgHIFU 应用器进行计算机辅助术中定位","authors":"Yacine M'Rad;Caecilia Charbonnier;Marcelo Elias de Oliveira;Pauline Coralie Guillemin;Lindsey Alexandra Crowe;Thibaud Kössler;Pierre-Alexandre Poletti;Sana Boudabbous;Alexis Ricoeur;Rares Salomir;Orane Lorton","doi":"10.1109/OJEMB.2024.3410118","DOIUrl":null,"url":null,"abstract":"Purpose: Transducer positioning for liver ablation by magnetic resonance-guided high-intensity focused ultrasound (MRgHIFU) is challenging due to the presence of air-filled organs or bones on the beam path. This paper presents a software tool developed to optimize the positioning of a HIFU transducer dedicated to abdominal thermal therapy, to maximize the treatment's efficiency while minimizing the near-field risk. Methods: A software tool was developed to determine the theoretical optimal position (TOP) of the transducer based on the minimization of a cost function using the particle swarm optimization (PSO). After an initialization phase and a manual segmentation of the abdomen of 5 pigs, the program randomly generates particles with 2 degrees of freedom and iteratively minimizes the cost function of the particles considering 3 parameters weighted according to their criticality. New particles are generated around the best position obtained at the previous step and the process is repeated until the optimal position of the transducer is reached. MR imaging data from \n<italic>in vivo</i>\n HIFU ablation in pig livers was used for ground truth comparison between the TOP and the experimental position (EP). Results: As compared to the manual EP, the rotation difference with the TOP was on average −3.1 ± 7.1° and the distance difference was on average −7.1 ± 5.4 mm. The computational time to suggest the TOP was 20s. The software tool is modulable and demonstrated consistency and robustness when repeating the calculation and changing the initial position of the transducer.","PeriodicalId":33825,"journal":{"name":"IEEE Open Journal of Engineering in Medicine and Biology","volume":"5 ","pages":"524-533"},"PeriodicalIF":2.7000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10549770","citationCount":"0","resultStr":"{\"title\":\"Computer-Aided Intra-Operatory Positioning of an MRgHIFU Applicator Dedicated to Abdominal Thermal Therapy Using Particle Swarm Optimization\",\"authors\":\"Yacine M'Rad;Caecilia Charbonnier;Marcelo Elias de Oliveira;Pauline Coralie Guillemin;Lindsey Alexandra Crowe;Thibaud Kössler;Pierre-Alexandre Poletti;Sana Boudabbous;Alexis Ricoeur;Rares Salomir;Orane Lorton\",\"doi\":\"10.1109/OJEMB.2024.3410118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purpose: Transducer positioning for liver ablation by magnetic resonance-guided high-intensity focused ultrasound (MRgHIFU) is challenging due to the presence of air-filled organs or bones on the beam path. This paper presents a software tool developed to optimize the positioning of a HIFU transducer dedicated to abdominal thermal therapy, to maximize the treatment's efficiency while minimizing the near-field risk. Methods: A software tool was developed to determine the theoretical optimal position (TOP) of the transducer based on the minimization of a cost function using the particle swarm optimization (PSO). After an initialization phase and a manual segmentation of the abdomen of 5 pigs, the program randomly generates particles with 2 degrees of freedom and iteratively minimizes the cost function of the particles considering 3 parameters weighted according to their criticality. New particles are generated around the best position obtained at the previous step and the process is repeated until the optimal position of the transducer is reached. MR imaging data from \\n<italic>in vivo</i>\\n HIFU ablation in pig livers was used for ground truth comparison between the TOP and the experimental position (EP). Results: As compared to the manual EP, the rotation difference with the TOP was on average −3.1 ± 7.1° and the distance difference was on average −7.1 ± 5.4 mm. The computational time to suggest the TOP was 20s. The software tool is modulable and demonstrated consistency and robustness when repeating the calculation and changing the initial position of the transducer.\",\"PeriodicalId\":33825,\"journal\":{\"name\":\"IEEE Open Journal of Engineering in Medicine and Biology\",\"volume\":\"5 \",\"pages\":\"524-533\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10549770\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of Engineering in Medicine and Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10549770/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Engineering in Medicine and Biology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10549770/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
摘要
目的:磁共振引导下高强度聚焦超声(MRgHIFU)肝脏消融的换能器定位具有挑战性,因为在射束路径上存在充满空气的器官或骨骼。本文介绍了一种软件工具,用于优化腹部热疗专用 HIFU 传感器的定位,以最大限度地提高治疗效率,同时最大限度地降低近场风险。方法:利用粒子群优化(PSO)技术,在最小化成本函数的基础上,开发了一种软件工具来确定换能器的理论最佳位置(TOP)。在初始化阶段和手动分割 5 头猪的腹部后,程序随机生成具有 2 个自由度的粒子,并根据粒子的临界值加权考虑 3 个参数,反复最小化粒子的成本函数。新粒子围绕上一步获得的最佳位置生成,该过程重复进行,直到达到换能器的最佳位置。猪肝脏活体 HIFU 消融的磁共振成像数据被用来比较 TOP 位置和实验位置 (EP) 之间的基本真实情况。结果:与手动 EP 相比,TOP 的旋转差平均为 -3.1 ± 7.1°,距离差平均为 -7.1 ± 5.4 mm。建议 TOP 的计算时间为 20 秒。该软件工具是可修改的,在重复计算和改变传感器初始位置时表现出一致性和稳健性。
Computer-Aided Intra-Operatory Positioning of an MRgHIFU Applicator Dedicated to Abdominal Thermal Therapy Using Particle Swarm Optimization
Purpose: Transducer positioning for liver ablation by magnetic resonance-guided high-intensity focused ultrasound (MRgHIFU) is challenging due to the presence of air-filled organs or bones on the beam path. This paper presents a software tool developed to optimize the positioning of a HIFU transducer dedicated to abdominal thermal therapy, to maximize the treatment's efficiency while minimizing the near-field risk. Methods: A software tool was developed to determine the theoretical optimal position (TOP) of the transducer based on the minimization of a cost function using the particle swarm optimization (PSO). After an initialization phase and a manual segmentation of the abdomen of 5 pigs, the program randomly generates particles with 2 degrees of freedom and iteratively minimizes the cost function of the particles considering 3 parameters weighted according to their criticality. New particles are generated around the best position obtained at the previous step and the process is repeated until the optimal position of the transducer is reached. MR imaging data from
in vivo
HIFU ablation in pig livers was used for ground truth comparison between the TOP and the experimental position (EP). Results: As compared to the manual EP, the rotation difference with the TOP was on average −3.1 ± 7.1° and the distance difference was on average −7.1 ± 5.4 mm. The computational time to suggest the TOP was 20s. The software tool is modulable and demonstrated consistency and robustness when repeating the calculation and changing the initial position of the transducer.
期刊介绍:
The IEEE Open Journal of Engineering in Medicine and Biology (IEEE OJEMB) is dedicated to serving the community of innovators in medicine, technology, and the sciences, with the core goal of advancing the highest-quality interdisciplinary research between these disciplines. The journal firmly believes that the future of medicine depends on close collaboration between biology and technology, and that fostering interaction between these fields is an important way to advance key discoveries that can improve clinical care.IEEE OJEMB is a gold open access journal in which the authors retain the copyright to their papers and readers have free access to the full text and PDFs on the IEEE Xplore® Digital Library. However, authors are required to pay an article processing fee at the time their paper is accepted for publication, using to cover the cost of publication.