Sepideh Amiri, Tomaž Vrtovec, Tamerlan Mustafaev, Christopher L. Deufel, Henrik S. Thomsen, Martin Hylleholt Sillesen, Erik Gudmann Steuble Brandt, Michael Brun Andersen, Christoph Felix Müller, Bulat Ibragimov
{"title":"基于强化学习的胰腺亚区和导管分割解剖图。","authors":"Sepideh Amiri, Tomaž Vrtovec, Tamerlan Mustafaev, Christopher L. Deufel, Henrik S. Thomsen, Martin Hylleholt Sillesen, Erik Gudmann Steuble Brandt, Michael Brun Andersen, Christoph Felix Müller, Bulat Ibragimov","doi":"10.1002/mp.17300","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>The pancreas is a complex abdominal organ with many anatomical variations, and therefore automated pancreas segmentation from medical images is a challenging application.</p>\n </section>\n \n <section>\n \n <h3> Purpose</h3>\n \n <p>In this paper, we present a framework for segmenting individual pancreatic subregions and the pancreatic duct from three-dimensional (3D) computed tomography (CT) images.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>A multiagent reinforcement learning (RL) network was used to detect landmarks of the head, neck, body, and tail of the pancreas, and landmarks along the pancreatic duct in a selected target CT image. Using the landmark detection results, an atlas of pancreases was nonrigidly registered to the target image, resulting in anatomical probability maps for the pancreatic subregions and duct. The probability maps were augmented with multilabel 3D U-Net architectures to obtain the final segmentation results.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>To evaluate the performance of our proposed framework, we computed the Dice similarity coefficient (DSC) between the predicted and ground truth manual segmentations on a database of 82 CT images with manually segmented pancreatic subregions and 37 CT images with manually segmented pancreatic ducts. For the four pancreatic subregions, the mean DSC improved from 0.38, 0.44, and 0.39 with standard 3D U-Net, Attention U-Net, and shifted windowing (Swin) U-Net architectures, to 0.51, 0.47, and 0.49, respectively, when utilizing the proposed RL-based framework. For the pancreatic duct, the RL-based framework achieved a mean DSC of 0.70, significantly outperforming the standard approaches and existing methods on different datasets.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>The resulting accuracy of the proposed RL-based segmentation framework demonstrates an improvement against segmentation with standard U-Net architectures.</p>\n </section>\n </div>","PeriodicalId":18384,"journal":{"name":"Medical physics","volume":"51 10","pages":"7378-7392"},"PeriodicalIF":3.2000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mp.17300","citationCount":"0","resultStr":"{\"title\":\"Reinforcement learning-based anatomical maps for pancreas subregion and duct segmentation\",\"authors\":\"Sepideh Amiri, Tomaž Vrtovec, Tamerlan Mustafaev, Christopher L. Deufel, Henrik S. Thomsen, Martin Hylleholt Sillesen, Erik Gudmann Steuble Brandt, Michael Brun Andersen, Christoph Felix Müller, Bulat Ibragimov\",\"doi\":\"10.1002/mp.17300\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Background</h3>\\n \\n <p>The pancreas is a complex abdominal organ with many anatomical variations, and therefore automated pancreas segmentation from medical images is a challenging application.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Purpose</h3>\\n \\n <p>In this paper, we present a framework for segmenting individual pancreatic subregions and the pancreatic duct from three-dimensional (3D) computed tomography (CT) images.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>A multiagent reinforcement learning (RL) network was used to detect landmarks of the head, neck, body, and tail of the pancreas, and landmarks along the pancreatic duct in a selected target CT image. Using the landmark detection results, an atlas of pancreases was nonrigidly registered to the target image, resulting in anatomical probability maps for the pancreatic subregions and duct. The probability maps were augmented with multilabel 3D U-Net architectures to obtain the final segmentation results.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>To evaluate the performance of our proposed framework, we computed the Dice similarity coefficient (DSC) between the predicted and ground truth manual segmentations on a database of 82 CT images with manually segmented pancreatic subregions and 37 CT images with manually segmented pancreatic ducts. For the four pancreatic subregions, the mean DSC improved from 0.38, 0.44, and 0.39 with standard 3D U-Net, Attention U-Net, and shifted windowing (Swin) U-Net architectures, to 0.51, 0.47, and 0.49, respectively, when utilizing the proposed RL-based framework. For the pancreatic duct, the RL-based framework achieved a mean DSC of 0.70, significantly outperforming the standard approaches and existing methods on different datasets.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusions</h3>\\n \\n <p>The resulting accuracy of the proposed RL-based segmentation framework demonstrates an improvement against segmentation with standard U-Net architectures.</p>\\n </section>\\n </div>\",\"PeriodicalId\":18384,\"journal\":{\"name\":\"Medical physics\",\"volume\":\"51 10\",\"pages\":\"7378-7392\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mp.17300\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical physics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mp.17300\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical physics","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mp.17300","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Reinforcement learning-based anatomical maps for pancreas subregion and duct segmentation
Background
The pancreas is a complex abdominal organ with many anatomical variations, and therefore automated pancreas segmentation from medical images is a challenging application.
Purpose
In this paper, we present a framework for segmenting individual pancreatic subregions and the pancreatic duct from three-dimensional (3D) computed tomography (CT) images.
Methods
A multiagent reinforcement learning (RL) network was used to detect landmarks of the head, neck, body, and tail of the pancreas, and landmarks along the pancreatic duct in a selected target CT image. Using the landmark detection results, an atlas of pancreases was nonrigidly registered to the target image, resulting in anatomical probability maps for the pancreatic subregions and duct. The probability maps were augmented with multilabel 3D U-Net architectures to obtain the final segmentation results.
Results
To evaluate the performance of our proposed framework, we computed the Dice similarity coefficient (DSC) between the predicted and ground truth manual segmentations on a database of 82 CT images with manually segmented pancreatic subregions and 37 CT images with manually segmented pancreatic ducts. For the four pancreatic subregions, the mean DSC improved from 0.38, 0.44, and 0.39 with standard 3D U-Net, Attention U-Net, and shifted windowing (Swin) U-Net architectures, to 0.51, 0.47, and 0.49, respectively, when utilizing the proposed RL-based framework. For the pancreatic duct, the RL-based framework achieved a mean DSC of 0.70, significantly outperforming the standard approaches and existing methods on different datasets.
Conclusions
The resulting accuracy of the proposed RL-based segmentation framework demonstrates an improvement against segmentation with standard U-Net architectures.
期刊介绍:
Medical Physics publishes original, high impact physics, imaging science, and engineering research that advances patient diagnosis and therapy through contributions in 1) Basic science developments with high potential for clinical translation 2) Clinical applications of cutting edge engineering and physics innovations 3) Broadly applicable and innovative clinical physics developments
Medical Physics is a journal of global scope and reach. By publishing in Medical Physics your research will reach an international, multidisciplinary audience including practicing medical physicists as well as physics- and engineering based translational scientists. We work closely with authors of promising articles to improve their quality.