Marie-Pier Roussel, Aymeric Ravel-Chapuis, Jonathan Gobin, Bernard J Jasmin, Jean-Philippe Leduc-Gaudet, Cynthia Gagnon, Elise Duchesne
{"title":"肌营养不良症 1 型骨骼肌生理病理标志物的变化:三年跟踪研究","authors":"Marie-Pier Roussel, Aymeric Ravel-Chapuis, Jonathan Gobin, Bernard J Jasmin, Jean-Philippe Leduc-Gaudet, Cynthia Gagnon, Elise Duchesne","doi":"10.3233/JND-230139","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Myotonic dystrophy type 1 (DM1) is a slowly progressive disease caused by abnormal CTG repetitions on the dystrophia myotonica protein kinase (DMPK) gene. Long mRNA from CTG repetitions stabilizes in nuclear foci and sequester muscleblind-like splicing regulator 1 (MBNL1). Cardinal signs of DM1 include muscle wasting and weakness. The impacts of DM1 progression on skeletal muscle are under-researched.</p><p><strong>Objective: </strong>Identifying physiopathological markers related to maximal strength loss over time in DM1.</p><p><strong>Methods: </strong>Twenty-two individuals with DM1 participated in two maximal isometric muscle strength (MIMS) evaluations of their knee extensors and two vastus lateralis muscle biopsies, 3 years apart. Muscle fiber typing, size (including minimal Feret's diameter [MFD] and atrophy/hypertrophy factors [AF/HF]), and nuclear foci and MBNL1 colocalization (foci/MBNL1+) were evaluated. Immunoblotting was used to measure glycogen synthase kinase-3 beta (GSK3β), p62, LC3BI, LC3BII, and oxidative phosphorylation proteins.</p><p><strong>Results: </strong>There are significant correlations between the fold changes of MIMS with type 1 fiber MFD (ρ= 0.483) and AF (ρ= -0.514). Regression analysis shows that baseline percentage of foci/MBNL1+ nuclei and strength training explain 44.1% of foci/MBNL1+ nuclei percentage variation over time. There are fair to excellent correlations between the fold changes of MIMS and GSK3β (ρ= 0.327), p62 (ρ= 0.473), LC3BI (ρ= 0.518), LC3BII (ρ= -0.391) and LC3BII/LC3BI (ρ= -0.773).</p><p><strong>Conclusion: </strong>Type 1 MFD decrease and AF increase are correlated with MIMS loss. There seems to be a plateau effect in foci/MBNL1+ nuclei accumulation and strength training helps decrease this accumulation. Autophagy marker LC3BII/LC3BI ratio has a good biomarker potential of MIMS loss, but more investigations are needed.</p>","PeriodicalId":16536,"journal":{"name":"Journal of neuromuscular diseases","volume":" ","pages":"981-995"},"PeriodicalIF":3.2000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11380274/pdf/","citationCount":"0","resultStr":"{\"title\":\"Changes in Physiopathological Markers in Myotonic Dystrophy Type 1 Skeletal Muscle: A 3-Year Follow-up Study.\",\"authors\":\"Marie-Pier Roussel, Aymeric Ravel-Chapuis, Jonathan Gobin, Bernard J Jasmin, Jean-Philippe Leduc-Gaudet, Cynthia Gagnon, Elise Duchesne\",\"doi\":\"10.3233/JND-230139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Myotonic dystrophy type 1 (DM1) is a slowly progressive disease caused by abnormal CTG repetitions on the dystrophia myotonica protein kinase (DMPK) gene. Long mRNA from CTG repetitions stabilizes in nuclear foci and sequester muscleblind-like splicing regulator 1 (MBNL1). Cardinal signs of DM1 include muscle wasting and weakness. The impacts of DM1 progression on skeletal muscle are under-researched.</p><p><strong>Objective: </strong>Identifying physiopathological markers related to maximal strength loss over time in DM1.</p><p><strong>Methods: </strong>Twenty-two individuals with DM1 participated in two maximal isometric muscle strength (MIMS) evaluations of their knee extensors and two vastus lateralis muscle biopsies, 3 years apart. Muscle fiber typing, size (including minimal Feret's diameter [MFD] and atrophy/hypertrophy factors [AF/HF]), and nuclear foci and MBNL1 colocalization (foci/MBNL1+) were evaluated. Immunoblotting was used to measure glycogen synthase kinase-3 beta (GSK3β), p62, LC3BI, LC3BII, and oxidative phosphorylation proteins.</p><p><strong>Results: </strong>There are significant correlations between the fold changes of MIMS with type 1 fiber MFD (ρ= 0.483) and AF (ρ= -0.514). Regression analysis shows that baseline percentage of foci/MBNL1+ nuclei and strength training explain 44.1% of foci/MBNL1+ nuclei percentage variation over time. There are fair to excellent correlations between the fold changes of MIMS and GSK3β (ρ= 0.327), p62 (ρ= 0.473), LC3BI (ρ= 0.518), LC3BII (ρ= -0.391) and LC3BII/LC3BI (ρ= -0.773).</p><p><strong>Conclusion: </strong>Type 1 MFD decrease and AF increase are correlated with MIMS loss. There seems to be a plateau effect in foci/MBNL1+ nuclei accumulation and strength training helps decrease this accumulation. Autophagy marker LC3BII/LC3BI ratio has a good biomarker potential of MIMS loss, but more investigations are needed.</p>\",\"PeriodicalId\":16536,\"journal\":{\"name\":\"Journal of neuromuscular diseases\",\"volume\":\" \",\"pages\":\"981-995\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11380274/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of neuromuscular diseases\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3233/JND-230139\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neuromuscular diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3233/JND-230139","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Changes in Physiopathological Markers in Myotonic Dystrophy Type 1 Skeletal Muscle: A 3-Year Follow-up Study.
Background: Myotonic dystrophy type 1 (DM1) is a slowly progressive disease caused by abnormal CTG repetitions on the dystrophia myotonica protein kinase (DMPK) gene. Long mRNA from CTG repetitions stabilizes in nuclear foci and sequester muscleblind-like splicing regulator 1 (MBNL1). Cardinal signs of DM1 include muscle wasting and weakness. The impacts of DM1 progression on skeletal muscle are under-researched.
Objective: Identifying physiopathological markers related to maximal strength loss over time in DM1.
Methods: Twenty-two individuals with DM1 participated in two maximal isometric muscle strength (MIMS) evaluations of their knee extensors and two vastus lateralis muscle biopsies, 3 years apart. Muscle fiber typing, size (including minimal Feret's diameter [MFD] and atrophy/hypertrophy factors [AF/HF]), and nuclear foci and MBNL1 colocalization (foci/MBNL1+) were evaluated. Immunoblotting was used to measure glycogen synthase kinase-3 beta (GSK3β), p62, LC3BI, LC3BII, and oxidative phosphorylation proteins.
Results: There are significant correlations between the fold changes of MIMS with type 1 fiber MFD (ρ= 0.483) and AF (ρ= -0.514). Regression analysis shows that baseline percentage of foci/MBNL1+ nuclei and strength training explain 44.1% of foci/MBNL1+ nuclei percentage variation over time. There are fair to excellent correlations between the fold changes of MIMS and GSK3β (ρ= 0.327), p62 (ρ= 0.473), LC3BI (ρ= 0.518), LC3BII (ρ= -0.391) and LC3BII/LC3BI (ρ= -0.773).
Conclusion: Type 1 MFD decrease and AF increase are correlated with MIMS loss. There seems to be a plateau effect in foci/MBNL1+ nuclei accumulation and strength training helps decrease this accumulation. Autophagy marker LC3BII/LC3BI ratio has a good biomarker potential of MIMS loss, but more investigations are needed.
期刊介绍:
The Journal of Neuromuscular Diseases aims to facilitate progress in understanding the molecular genetics/correlates, pathogenesis, pharmacology, diagnosis and treatment of acquired and genetic neuromuscular diseases (including muscular dystrophy, myasthenia gravis, spinal muscular atrophy, neuropathies, myopathies, myotonias and myositis). The journal publishes research reports, reviews, short communications, letters-to-the-editor, and will consider research that has negative findings. The journal is dedicated to providing an open forum for original research in basic science, translational and clinical research that will improve our fundamental understanding and lead to effective treatments of neuromuscular diseases.