{"title":"马德拉岛特有果蝇 Drosophila madeirensis 的染色体级基因组组装。","authors":"Kenta Tomihara, Ana Llopart, Daisuke Yamamoto","doi":"10.1093/g3journal/jkae167","DOIUrl":null,"url":null,"abstract":"<p><p>Drosophila subobscura is distributed across Europe, the Near East, and the Americas, while its sister species, Drosophila madeirensis, is endemic to the island of Madeira in the Atlantic Ocean. D. subobscura is known for its strict light-dependence in mating and its unique courtship displays, including nuptial gift-giving. D. subobscura has also attracted the interest of researchers because of its abundant variations in chromosomal polymorphisms correlated to the latitude and season, which have been used as a tool to track global climate warming. Although D. madeirensis can be an important resource for understanding the evolutionary underpinning of these genetic characteristics of D. subobscura, little work has been done on the biology of this species. Here, we used a HiFi long-read sequencing data set to produce a de novo genome assembly for D. madeirensis. This assembly comprises a total of 111 contigs spanning 135.5 Mb and has an N50 of 24.2 Mb and a BUSCO completeness score of 98.6%. Each of the 6 chromosomes of D. madeirensis consisted of a single contig except for some centromeric regions. Breakpoints of the chromosomal inversions between D. subobscura and D. madeirensis were characterized using this genome assembly, updating some of the previously identified locations.</p>","PeriodicalId":12468,"journal":{"name":"G3: Genes|Genomes|Genetics","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11373663/pdf/","citationCount":"0","resultStr":"{\"title\":\"A chromosome-level genome assembly of Drosophila madeirensis, a fruit fly species endemic to the island of Madeira.\",\"authors\":\"Kenta Tomihara, Ana Llopart, Daisuke Yamamoto\",\"doi\":\"10.1093/g3journal/jkae167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Drosophila subobscura is distributed across Europe, the Near East, and the Americas, while its sister species, Drosophila madeirensis, is endemic to the island of Madeira in the Atlantic Ocean. D. subobscura is known for its strict light-dependence in mating and its unique courtship displays, including nuptial gift-giving. D. subobscura has also attracted the interest of researchers because of its abundant variations in chromosomal polymorphisms correlated to the latitude and season, which have been used as a tool to track global climate warming. Although D. madeirensis can be an important resource for understanding the evolutionary underpinning of these genetic characteristics of D. subobscura, little work has been done on the biology of this species. Here, we used a HiFi long-read sequencing data set to produce a de novo genome assembly for D. madeirensis. This assembly comprises a total of 111 contigs spanning 135.5 Mb and has an N50 of 24.2 Mb and a BUSCO completeness score of 98.6%. Each of the 6 chromosomes of D. madeirensis consisted of a single contig except for some centromeric regions. Breakpoints of the chromosomal inversions between D. subobscura and D. madeirensis were characterized using this genome assembly, updating some of the previously identified locations.</p>\",\"PeriodicalId\":12468,\"journal\":{\"name\":\"G3: Genes|Genomes|Genetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11373663/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"G3: Genes|Genomes|Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/g3journal/jkae167\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"G3: Genes|Genomes|Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/g3journal/jkae167","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
A chromosome-level genome assembly of Drosophila madeirensis, a fruit fly species endemic to the island of Madeira.
Drosophila subobscura is distributed across Europe, the Near East, and the Americas, while its sister species, Drosophila madeirensis, is endemic to the island of Madeira in the Atlantic Ocean. D. subobscura is known for its strict light-dependence in mating and its unique courtship displays, including nuptial gift-giving. D. subobscura has also attracted the interest of researchers because of its abundant variations in chromosomal polymorphisms correlated to the latitude and season, which have been used as a tool to track global climate warming. Although D. madeirensis can be an important resource for understanding the evolutionary underpinning of these genetic characteristics of D. subobscura, little work has been done on the biology of this species. Here, we used a HiFi long-read sequencing data set to produce a de novo genome assembly for D. madeirensis. This assembly comprises a total of 111 contigs spanning 135.5 Mb and has an N50 of 24.2 Mb and a BUSCO completeness score of 98.6%. Each of the 6 chromosomes of D. madeirensis consisted of a single contig except for some centromeric regions. Breakpoints of the chromosomal inversions between D. subobscura and D. madeirensis were characterized using this genome assembly, updating some of the previously identified locations.
期刊介绍:
G3: Genes, Genomes, Genetics provides a forum for the publication of high‐quality foundational research, particularly research that generates useful genetic and genomic information such as genome maps, single gene studies, genome‐wide association and QTL studies, as well as genome reports, mutant screens, and advances in methods and technology. The Editorial Board of G3 believes that rapid dissemination of these data is the necessary foundation for analysis that leads to mechanistic insights.
G3, published by the Genetics Society of America, meets the critical and growing need of the genetics community for rapid review and publication of important results in all areas of genetics. G3 offers the opportunity to publish the puzzling finding or to present unpublished results that may not have been submitted for review and publication due to a perceived lack of a potential high-impact finding. G3 has earned the DOAJ Seal, which is a mark of certification for open access journals, awarded by DOAJ to journals that achieve a high level of openness, adhere to Best Practice and high publishing standards.