Guillaume Carlier, Alex Delalande, Quentin Mérigot
{"title":"通过最优传输图实现前推操作的定量稳定性","authors":"Guillaume Carlier, Alex Delalande, Quentin Mérigot","doi":"10.1007/s10208-024-09669-4","DOIUrl":null,"url":null,"abstract":"<p>We study the quantitative stability of the mapping that to a measure associates its pushforward measure by a fixed (non-smooth) optimal transport map. We exhibit a tight Hölder-behavior for this operation under minimal assumptions. Our proof essentially relies on a new bound that quantifies the size of the singular sets of a convex and Lipschitz continuous function on a bounded domain.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantitative Stability of the Pushforward Operation by an Optimal Transport Map\",\"authors\":\"Guillaume Carlier, Alex Delalande, Quentin Mérigot\",\"doi\":\"10.1007/s10208-024-09669-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the quantitative stability of the mapping that to a measure associates its pushforward measure by a fixed (non-smooth) optimal transport map. We exhibit a tight Hölder-behavior for this operation under minimal assumptions. Our proof essentially relies on a new bound that quantifies the size of the singular sets of a convex and Lipschitz continuous function on a bounded domain.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10208-024-09669-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10208-024-09669-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Quantitative Stability of the Pushforward Operation by an Optimal Transport Map
We study the quantitative stability of the mapping that to a measure associates its pushforward measure by a fixed (non-smooth) optimal transport map. We exhibit a tight Hölder-behavior for this operation under minimal assumptions. Our proof essentially relies on a new bound that quantifies the size of the singular sets of a convex and Lipschitz continuous function on a bounded domain.