基于二维材料的先进光学偏振器

Yuning Zhang, Jiayang Wu, Linnan Jia, Di Jin, Baohua Jia, Xiaoyong Hu, David Moss, Qihuang Gong
{"title":"基于二维材料的先进光学偏振器","authors":"Yuning Zhang, Jiayang Wu, Linnan Jia, Di Jin, Baohua Jia, Xiaoyong Hu, David Moss, Qihuang Gong","doi":"10.1038/s44310-024-00028-3","DOIUrl":null,"url":null,"abstract":"Optical polarizers are essential components for the selection and manipulation of light polarization states in optical systems. Over the past decade, the rapid advancement of photonic technologies and devices has led to the development of a range of novel optical polarizers, opening avenues for many breakthroughs and expanding applications across diverse fields. Particularly, two-dimensional (2D) materials, known for their atomic thin film structures and unique optical properties, have become attractive for implementing optical polarizers with high performance and new features that were not achievable before. This paper reviews recent progress in 2D-material-based optical polarizers. First, an overview of key properties of various 2D materials for realizing optical polarizers is provided. Next, the state-of-the-art optical polarizers based on 2D materials, which are categorized into spatial-light devices, fiber devices, and integrated waveguide devices, are reviewed and compared. Finally, we discuss the current challenges of this field as well as the exciting opportunities for future technological advances.","PeriodicalId":501711,"journal":{"name":"npj Nanophotonics","volume":" ","pages":"1-17"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44310-024-00028-3.pdf","citationCount":"0","resultStr":"{\"title\":\"Advanced optical polarizers based on 2D materials\",\"authors\":\"Yuning Zhang, Jiayang Wu, Linnan Jia, Di Jin, Baohua Jia, Xiaoyong Hu, David Moss, Qihuang Gong\",\"doi\":\"10.1038/s44310-024-00028-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optical polarizers are essential components for the selection and manipulation of light polarization states in optical systems. Over the past decade, the rapid advancement of photonic technologies and devices has led to the development of a range of novel optical polarizers, opening avenues for many breakthroughs and expanding applications across diverse fields. Particularly, two-dimensional (2D) materials, known for their atomic thin film structures and unique optical properties, have become attractive for implementing optical polarizers with high performance and new features that were not achievable before. This paper reviews recent progress in 2D-material-based optical polarizers. First, an overview of key properties of various 2D materials for realizing optical polarizers is provided. Next, the state-of-the-art optical polarizers based on 2D materials, which are categorized into spatial-light devices, fiber devices, and integrated waveguide devices, are reviewed and compared. Finally, we discuss the current challenges of this field as well as the exciting opportunities for future technological advances.\",\"PeriodicalId\":501711,\"journal\":{\"name\":\"npj Nanophotonics\",\"volume\":\" \",\"pages\":\"1-17\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s44310-024-00028-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Nanophotonics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44310-024-00028-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Nanophotonics","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44310-024-00028-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

光偏振器是光学系统中选择和操纵光偏振态的重要元件。在过去的十年中,光子技术和器件的飞速发展催生了一系列新型光偏振器的开发,为实现诸多突破开辟了道路,并扩大了在各个领域的应用。特别是二维(2D)材料,因其原子薄膜结构和独特的光学特性而闻名,已成为实现高性能和新功能的光偏振器的理想材料。本文回顾了基于二维材料的光学偏振器的最新进展。首先,概述了用于实现光学偏振器的各种二维材料的关键特性。然后,回顾并比较了基于二维材料的最新光学偏振器,这些偏振器可分为空间光器件、光纤器件和集成波导器件。最后,我们讨论了这一领域当前面临的挑战以及未来技术进步的机遇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Advanced optical polarizers based on 2D materials

Advanced optical polarizers based on 2D materials
Optical polarizers are essential components for the selection and manipulation of light polarization states in optical systems. Over the past decade, the rapid advancement of photonic technologies and devices has led to the development of a range of novel optical polarizers, opening avenues for many breakthroughs and expanding applications across diverse fields. Particularly, two-dimensional (2D) materials, known for their atomic thin film structures and unique optical properties, have become attractive for implementing optical polarizers with high performance and new features that were not achievable before. This paper reviews recent progress in 2D-material-based optical polarizers. First, an overview of key properties of various 2D materials for realizing optical polarizers is provided. Next, the state-of-the-art optical polarizers based on 2D materials, which are categorized into spatial-light devices, fiber devices, and integrated waveguide devices, are reviewed and compared. Finally, we discuss the current challenges of this field as well as the exciting opportunities for future technological advances.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信