预测船只运动的概率方法

IF 15.3 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Qi Hu;Jingyi Liu;Zongyu Zuo
{"title":"预测船只运动的概率方法","authors":"Qi Hu;Jingyi Liu;Zongyu Zuo","doi":"10.1109/JAS.2024.124536","DOIUrl":null,"url":null,"abstract":"Dear Editor, This letter addresses the challenge of forecasting the motion of real-world vessels over an extended period with a limited amount of available data. By employing stochastic differential equation (SDE) modeling, we integrate both deterministic and stochastic components of the available information. Subsequently, we establish a recursive prediction methodology based on Bayes' rule to update the model state when new measurements are received. Furthermore, we develop a stochastic model tailored specifically to vessel dynamics and introduce an approximation method to tackle computational complexities. Finally, we present an application example and conduct a comparative experiment to validate the effectiveness and superiority of the proposed method.","PeriodicalId":54230,"journal":{"name":"Ieee-Caa Journal of Automatica Sinica","volume":"11 8","pages":"1877-1879"},"PeriodicalIF":15.3000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10605731","citationCount":"0","resultStr":"{\"title\":\"A Probabilistic Approach for Predicting Vessel Motion\",\"authors\":\"Qi Hu;Jingyi Liu;Zongyu Zuo\",\"doi\":\"10.1109/JAS.2024.124536\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dear Editor, This letter addresses the challenge of forecasting the motion of real-world vessels over an extended period with a limited amount of available data. By employing stochastic differential equation (SDE) modeling, we integrate both deterministic and stochastic components of the available information. Subsequently, we establish a recursive prediction methodology based on Bayes' rule to update the model state when new measurements are received. Furthermore, we develop a stochastic model tailored specifically to vessel dynamics and introduce an approximation method to tackle computational complexities. Finally, we present an application example and conduct a comparative experiment to validate the effectiveness and superiority of the proposed method.\",\"PeriodicalId\":54230,\"journal\":{\"name\":\"Ieee-Caa Journal of Automatica Sinica\",\"volume\":\"11 8\",\"pages\":\"1877-1879\"},\"PeriodicalIF\":15.3000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10605731\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ieee-Caa Journal of Automatica Sinica\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10605731/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ieee-Caa Journal of Automatica Sinica","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10605731/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

亲爱的编辑,这封信探讨了如何利用有限的可用数据预测现实世界中船只在较长时间内的运动情况这一难题。通过采用随机微分方程(SDE)建模,我们整合了可用信息中的确定性和随机性成分。随后,我们建立了基于贝叶斯规则的递归预测方法,以便在收到新的测量数据时更新模型状态。此外,我们还开发了一种专门针对船舶动态的随机模型,并引入了一种近似方法来解决计算复杂性问题。最后,我们介绍了一个应用实例,并进行了对比实验,以验证所提方法的有效性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Probabilistic Approach for Predicting Vessel Motion
Dear Editor, This letter addresses the challenge of forecasting the motion of real-world vessels over an extended period with a limited amount of available data. By employing stochastic differential equation (SDE) modeling, we integrate both deterministic and stochastic components of the available information. Subsequently, we establish a recursive prediction methodology based on Bayes' rule to update the model state when new measurements are received. Furthermore, we develop a stochastic model tailored specifically to vessel dynamics and introduce an approximation method to tackle computational complexities. Finally, we present an application example and conduct a comparative experiment to validate the effectiveness and superiority of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ieee-Caa Journal of Automatica Sinica
Ieee-Caa Journal of Automatica Sinica Engineering-Control and Systems Engineering
CiteScore
23.50
自引率
11.00%
发文量
880
期刊介绍: The IEEE/CAA Journal of Automatica Sinica is a reputable journal that publishes high-quality papers in English on original theoretical/experimental research and development in the field of automation. The journal covers a wide range of topics including automatic control, artificial intelligence and intelligent control, systems theory and engineering, pattern recognition and intelligent systems, automation engineering and applications, information processing and information systems, network-based automation, robotics, sensing and measurement, and navigation, guidance, and control. Additionally, the journal is abstracted/indexed in several prominent databases including SCIE (Science Citation Index Expanded), EI (Engineering Index), Inspec, Scopus, SCImago, DBLP, CNKI (China National Knowledge Infrastructure), CSCD (Chinese Science Citation Database), and IEEE Xplore.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信