{"title":"用于肉桂醛化学选择性氢化的掺钯碳-N:在多相间歇和连续流系统中揭示粒度和支持物的影响","authors":"","doi":"10.1016/j.apcata.2024.119864","DOIUrl":null,"url":null,"abstract":"<div><p>The chemoselective hydrogenation of the C<img>C bond of cinnamaldehyde (CAL) was investigated under batch and continuous flow conditions, by comparing the performance of two <em>ad-hoc</em> prepared palladium-based catalysts supported on <em>N</em>-doped carbons to that of a commercial Pd/C system. An impregnation (I) and a solution-mediated (S) protocols were used for the synthesis of the catalytic materials, Pd-N/C<sub>i</sub> and Pd-N/C<sub>s</sub>, respectively, in the presence of chitin as a precursor of the support. The S method afforded palladium nanoparticles of 2.0±0.5 nm, while by impregnation, a wider size distribution was achieved with particles mostly belonging to two groups displaying a mean radius of 3.0±0.5 nm and 8.4±0.5 nm, respectively. A parametric analysis of the hydrogenation reaction showed that both the reaction conditions and the nature of the catalysts played a role to steer the selectivity towards the formation of the desired product, 3-phenylpropanal (hydrocinnamaldehyde, HCAL). At 50 °C and 1 bar H<sub>2</sub>, in a triphasic (liquid-liquid-liquid) batch reactor where the catalyst was compartmentalized in an ionic liquid layer, Pd-N/C<sub>i</sub> and commercial Pd/C were almost equally active and allowed to obtain HCAL in a 90–96 % selectivity at complete conversion. On the other hand, at the same T and p (50 °C/1 bar), Pd-N/C<sub>s</sub> was more effective in the continuous-flow mode: the process was quantitative yielding HCAL with a selectivity and a productivity of 91 % of 16 mmol (g<sub>cat</sub> h)<sup>−1</sup>, respectively, while the catalyst proved highly stable showing no loss of activity over 300 min of time on-stream. The reaction environment, the size and dispersion of the metal active sites, and the nature of the catalyst support were major contributors to such results, acting synergistically to each other to tune the energetics of adsorption/desorption of reactants/products, of the interfacial interactions/ barriers, and in the last analysis, of the process kinetics/selectivity.</p></div>","PeriodicalId":243,"journal":{"name":"Applied Catalysis A: General","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pd-N-doped carbons for chemoselective hydrogenation of cinnamaldehyde: Unravelling the influence of particle size and support in multiphase batch and continuous-flow systems\",\"authors\":\"\",\"doi\":\"10.1016/j.apcata.2024.119864\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The chemoselective hydrogenation of the C<img>C bond of cinnamaldehyde (CAL) was investigated under batch and continuous flow conditions, by comparing the performance of two <em>ad-hoc</em> prepared palladium-based catalysts supported on <em>N</em>-doped carbons to that of a commercial Pd/C system. An impregnation (I) and a solution-mediated (S) protocols were used for the synthesis of the catalytic materials, Pd-N/C<sub>i</sub> and Pd-N/C<sub>s</sub>, respectively, in the presence of chitin as a precursor of the support. The S method afforded palladium nanoparticles of 2.0±0.5 nm, while by impregnation, a wider size distribution was achieved with particles mostly belonging to two groups displaying a mean radius of 3.0±0.5 nm and 8.4±0.5 nm, respectively. A parametric analysis of the hydrogenation reaction showed that both the reaction conditions and the nature of the catalysts played a role to steer the selectivity towards the formation of the desired product, 3-phenylpropanal (hydrocinnamaldehyde, HCAL). At 50 °C and 1 bar H<sub>2</sub>, in a triphasic (liquid-liquid-liquid) batch reactor where the catalyst was compartmentalized in an ionic liquid layer, Pd-N/C<sub>i</sub> and commercial Pd/C were almost equally active and allowed to obtain HCAL in a 90–96 % selectivity at complete conversion. On the other hand, at the same T and p (50 °C/1 bar), Pd-N/C<sub>s</sub> was more effective in the continuous-flow mode: the process was quantitative yielding HCAL with a selectivity and a productivity of 91 % of 16 mmol (g<sub>cat</sub> h)<sup>−1</sup>, respectively, while the catalyst proved highly stable showing no loss of activity over 300 min of time on-stream. The reaction environment, the size and dispersion of the metal active sites, and the nature of the catalyst support were major contributors to such results, acting synergistically to each other to tune the energetics of adsorption/desorption of reactants/products, of the interfacial interactions/ barriers, and in the last analysis, of the process kinetics/selectivity.</p></div>\",\"PeriodicalId\":243,\"journal\":{\"name\":\"Applied Catalysis A: General\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Catalysis A: General\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926860X24003090\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Catalysis A: General","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926860X24003090","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Pd-N-doped carbons for chemoselective hydrogenation of cinnamaldehyde: Unravelling the influence of particle size and support in multiphase batch and continuous-flow systems
The chemoselective hydrogenation of the CC bond of cinnamaldehyde (CAL) was investigated under batch and continuous flow conditions, by comparing the performance of two ad-hoc prepared palladium-based catalysts supported on N-doped carbons to that of a commercial Pd/C system. An impregnation (I) and a solution-mediated (S) protocols were used for the synthesis of the catalytic materials, Pd-N/Ci and Pd-N/Cs, respectively, in the presence of chitin as a precursor of the support. The S method afforded palladium nanoparticles of 2.0±0.5 nm, while by impregnation, a wider size distribution was achieved with particles mostly belonging to two groups displaying a mean radius of 3.0±0.5 nm and 8.4±0.5 nm, respectively. A parametric analysis of the hydrogenation reaction showed that both the reaction conditions and the nature of the catalysts played a role to steer the selectivity towards the formation of the desired product, 3-phenylpropanal (hydrocinnamaldehyde, HCAL). At 50 °C and 1 bar H2, in a triphasic (liquid-liquid-liquid) batch reactor where the catalyst was compartmentalized in an ionic liquid layer, Pd-N/Ci and commercial Pd/C were almost equally active and allowed to obtain HCAL in a 90–96 % selectivity at complete conversion. On the other hand, at the same T and p (50 °C/1 bar), Pd-N/Cs was more effective in the continuous-flow mode: the process was quantitative yielding HCAL with a selectivity and a productivity of 91 % of 16 mmol (gcat h)−1, respectively, while the catalyst proved highly stable showing no loss of activity over 300 min of time on-stream. The reaction environment, the size and dispersion of the metal active sites, and the nature of the catalyst support were major contributors to such results, acting synergistically to each other to tune the energetics of adsorption/desorption of reactants/products, of the interfacial interactions/ barriers, and in the last analysis, of the process kinetics/selectivity.
期刊介绍:
Applied Catalysis A: General publishes original papers on all aspects of catalysis of basic and practical interest to chemical scientists in both industrial and academic fields, with an emphasis onnew understanding of catalysts and catalytic reactions, new catalytic materials, new techniques, and new processes, especially those that have potential practical implications.
Papers that report results of a thorough study or optimization of systems or processes that are well understood, widely studied, or minor variations of known ones are discouraged. Authors should include statements in a separate section "Justification for Publication" of how the manuscript fits the scope of the journal in the cover letter to the editors. Submissions without such justification will be rejected without review.