超越工作流程的流程挖掘

IF 8.2 1区 计算机科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Wil M.P. van der Aalst , Hajo A. Reijers , Laura Maruster
{"title":"超越工作流程的流程挖掘","authors":"Wil M.P. van der Aalst ,&nbsp;Hajo A. Reijers ,&nbsp;Laura Maruster","doi":"10.1016/j.compind.2024.104126","DOIUrl":null,"url":null,"abstract":"<div><p>After two decades of research and development, process mining techniques are now recognized as essential analysis tools, as they have their own Gartner Magic Quadrant. The development of process mining techniques is rooted in process-related research fields such as Business Process Management and fueled by increasing data availability. To cope with the complexity of business processes, the focus of process mining techniques needs to go beyond workflow-like processes, that represent the life-cycle of a single case and enable multiple object types and events. This can only be accomplished by capitalizing on essential concepts from production and logistics domains, such as Bills-of-Materials (BOMs), and Customer Order Decoupling Points (CODPs). Pioneer researchers, e.g. Hans Wortmann contributed to the development of Enterprise Resource Planning, enterprise modeling, product models, and lean manufacturing. Experiences from these fields help to lift the process mining domain from case-based (i.e. workflow mining) to object-centered process mining. These contributions could be realized by conducting insightful case studies at company sites, one of them being discussed in this paper. The evaluation of process mining techniques is elaborated by proposing an “evaluation ladder”, and its application is shown in the case study under consideration.</p></div>","PeriodicalId":55219,"journal":{"name":"Computers in Industry","volume":"161 ","pages":"Article 104126"},"PeriodicalIF":8.2000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S016636152400054X/pdfft?md5=1a7c8c680d22d908a890dbdb32198922&pid=1-s2.0-S016636152400054X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Process mining beyond workflows\",\"authors\":\"Wil M.P. van der Aalst ,&nbsp;Hajo A. Reijers ,&nbsp;Laura Maruster\",\"doi\":\"10.1016/j.compind.2024.104126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>After two decades of research and development, process mining techniques are now recognized as essential analysis tools, as they have their own Gartner Magic Quadrant. The development of process mining techniques is rooted in process-related research fields such as Business Process Management and fueled by increasing data availability. To cope with the complexity of business processes, the focus of process mining techniques needs to go beyond workflow-like processes, that represent the life-cycle of a single case and enable multiple object types and events. This can only be accomplished by capitalizing on essential concepts from production and logistics domains, such as Bills-of-Materials (BOMs), and Customer Order Decoupling Points (CODPs). Pioneer researchers, e.g. Hans Wortmann contributed to the development of Enterprise Resource Planning, enterprise modeling, product models, and lean manufacturing. Experiences from these fields help to lift the process mining domain from case-based (i.e. workflow mining) to object-centered process mining. These contributions could be realized by conducting insightful case studies at company sites, one of them being discussed in this paper. The evaluation of process mining techniques is elaborated by proposing an “evaluation ladder”, and its application is shown in the case study under consideration.</p></div>\",\"PeriodicalId\":55219,\"journal\":{\"name\":\"Computers in Industry\",\"volume\":\"161 \",\"pages\":\"Article 104126\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S016636152400054X/pdfft?md5=1a7c8c680d22d908a890dbdb32198922&pid=1-s2.0-S016636152400054X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers in Industry\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016636152400054X\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in Industry","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016636152400054X","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

经过二十年的研究和发展,流程挖掘技术现已被公认为必不可少的分析工具,并拥有自己的 Gartner 魔力象限。流程挖掘技术的发展源于与流程相关的研究领域,如业务流程管理,同时也受到数据可用性不断提高的推动。为了应对业务流程的复杂性,流程挖掘技术的重点需要超越类似工作流的流程,即代表单个案例的生命周期并支持多种对象类型和事件的流程。要做到这一点,就必须利用生产和物流领域的基本概念,如物料清单(BOM)和客户订单解耦点(CODP)。汉斯-沃特曼(Hans Wortmann)等先驱研究人员为企业资源规划、企业建模、产品模型和精益生产的发展做出了贡献。这些领域的经验有助于将流程挖掘领域从基于案例(即工作流挖掘)提升到以对象为中心的流程挖掘。这些贡献可以通过在公司现场开展深入的案例研究来实现,本文讨论的就是其中之一。本文提出了一个 "评估阶梯",对流程挖掘技术的评估进行了详细阐述,并在案例研究中展示了其应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Process mining beyond workflows

After two decades of research and development, process mining techniques are now recognized as essential analysis tools, as they have their own Gartner Magic Quadrant. The development of process mining techniques is rooted in process-related research fields such as Business Process Management and fueled by increasing data availability. To cope with the complexity of business processes, the focus of process mining techniques needs to go beyond workflow-like processes, that represent the life-cycle of a single case and enable multiple object types and events. This can only be accomplished by capitalizing on essential concepts from production and logistics domains, such as Bills-of-Materials (BOMs), and Customer Order Decoupling Points (CODPs). Pioneer researchers, e.g. Hans Wortmann contributed to the development of Enterprise Resource Planning, enterprise modeling, product models, and lean manufacturing. Experiences from these fields help to lift the process mining domain from case-based (i.e. workflow mining) to object-centered process mining. These contributions could be realized by conducting insightful case studies at company sites, one of them being discussed in this paper. The evaluation of process mining techniques is elaborated by proposing an “evaluation ladder”, and its application is shown in the case study under consideration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers in Industry
Computers in Industry 工程技术-计算机:跨学科应用
CiteScore
18.90
自引率
8.00%
发文量
152
审稿时长
22 days
期刊介绍: The objective of Computers in Industry is to present original, high-quality, application-oriented research papers that: • Illuminate emerging trends and possibilities in the utilization of Information and Communication Technology in industry; • Establish connections or integrations across various technology domains within the expansive realm of computer applications for industry; • Foster connections or integrations across diverse application areas of ICT in industry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信