{"title":"自洽信号转导分析,用于模拟特定环境下的信号级联和扰动。","authors":"John Cole","doi":"10.1038/s41540-024-00404-x","DOIUrl":null,"url":null,"abstract":"<p><p>Biological signal transduction networks are central to information processing and regulation of gene expression across all domains of life. Dysregulation is known to cause a wide array of diseases, including cancers. Here I introduce self-consistent signal transduction analysis, which utilizes genome-scale -omics data (specifically transcriptomics and/or proteomics) in order to predict the flow of information through these networks in an individualized manner. I apply the method to the study of endocrine therapy in breast cancer patients, and show that drugs that inhibit estrogen receptor α elicit a wide array of antitumoral effects, and that their most clinically-impactful ones are through the modulation of proliferative signals that control the genes GREB1, HK1, AKT1, MAPK1, AKT2, and NQO1. This method offers researchers a valuable tool in understanding how and why dysregulation occurs, and how perturbations to the network (such as targeted therapies) effect the network itself, and ultimately patient outcomes.</p>","PeriodicalId":19345,"journal":{"name":"NPJ Systems Biology and Applications","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11271576/pdf/","citationCount":"0","resultStr":"{\"title\":\"Self-consistent signal transduction analysis for modeling context-specific signaling cascades and perturbations.\",\"authors\":\"John Cole\",\"doi\":\"10.1038/s41540-024-00404-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Biological signal transduction networks are central to information processing and regulation of gene expression across all domains of life. Dysregulation is known to cause a wide array of diseases, including cancers. Here I introduce self-consistent signal transduction analysis, which utilizes genome-scale -omics data (specifically transcriptomics and/or proteomics) in order to predict the flow of information through these networks in an individualized manner. I apply the method to the study of endocrine therapy in breast cancer patients, and show that drugs that inhibit estrogen receptor α elicit a wide array of antitumoral effects, and that their most clinically-impactful ones are through the modulation of proliferative signals that control the genes GREB1, HK1, AKT1, MAPK1, AKT2, and NQO1. This method offers researchers a valuable tool in understanding how and why dysregulation occurs, and how perturbations to the network (such as targeted therapies) effect the network itself, and ultimately patient outcomes.</p>\",\"PeriodicalId\":19345,\"journal\":{\"name\":\"NPJ Systems Biology and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11271576/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NPJ Systems Biology and Applications\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41540-024-00404-x\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Systems Biology and Applications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41540-024-00404-x","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Self-consistent signal transduction analysis for modeling context-specific signaling cascades and perturbations.
Biological signal transduction networks are central to information processing and regulation of gene expression across all domains of life. Dysregulation is known to cause a wide array of diseases, including cancers. Here I introduce self-consistent signal transduction analysis, which utilizes genome-scale -omics data (specifically transcriptomics and/or proteomics) in order to predict the flow of information through these networks in an individualized manner. I apply the method to the study of endocrine therapy in breast cancer patients, and show that drugs that inhibit estrogen receptor α elicit a wide array of antitumoral effects, and that their most clinically-impactful ones are through the modulation of proliferative signals that control the genes GREB1, HK1, AKT1, MAPK1, AKT2, and NQO1. This method offers researchers a valuable tool in understanding how and why dysregulation occurs, and how perturbations to the network (such as targeted therapies) effect the network itself, and ultimately patient outcomes.
期刊介绍:
npj Systems Biology and Applications is an online Open Access journal dedicated to publishing the premier research that takes a systems-oriented approach. The journal aims to provide a forum for the presentation of articles that help define this nascent field, as well as those that apply the advances to wider fields. We encourage studies that integrate, or aid the integration of, data, analyses and insight from molecules to organisms and broader systems. Important areas of interest include not only fundamental biological systems and drug discovery, but also applications to health, medical practice and implementation, big data, biotechnology, food science, human behaviour, broader biological systems and industrial applications of systems biology.
We encourage all approaches, including network biology, application of control theory to biological systems, computational modelling and analysis, comprehensive and/or high-content measurements, theoretical, analytical and computational studies of system-level properties of biological systems and computational/software/data platforms enabling such studies.