烟酰胺核糖甙通过减轻氧化损伤和调节肠道代谢,缓解电离辐射诱导的肠道衰老。

Tongpeng Yue, Yinping Dong, Qidong Huo, Wenxuan Li, Xinyue Wang, Shiyi Zhang, Huirong Fan, Xin Wu, Xin He, Yu Zhao, Deguan Li
{"title":"烟酰胺核糖甙通过减轻氧化损伤和调节肠道代谢,缓解电离辐射诱导的肠道衰老。","authors":"Tongpeng Yue, Yinping Dong, Qidong Huo, Wenxuan Li, Xinyue Wang, Shiyi Zhang, Huirong Fan, Xin Wu, Xin He, Yu Zhao, Deguan Li","doi":"10.1016/j.jare.2024.07.010","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The intestine, frequently subjected to pelvic or abdominal radiotherapy, is particularly vulnerable to delayed effects of acute radiation exposure (DEARE) owing to its high radiation sensitivity. Radiation-induced intestinal senescence, a result of DEARE, profoundly affects the well-being and quality of life of radiotherapy patients. However, targeted pharmaceutical interventions for radiation-induced senescence are currently scarce. Our findings showcase that nicotinamide riboside(NR) effectively alleviates radiation-induced intestinal senescence, offering crucial implications for utilizing NR as a pharmacological agent to combat intestinal DEARE.</p><p><strong>Objectives: </strong>The aim of this study was to investigate the ability of NR to reduce radiation induced intestinal senescence and explore its related mechanisms.</p><p><strong>Methods: </strong>Male C57BL/6J mice were randomly divided into CON, IR, and IR + NR groups. The mice in the IR and IR + NR groups were subjected to a 6.0 Gy γ-ray total body exposure. After 8 weeks, the mice in the IR + NR group received NR via gavage at a dose of 400 mg/kg/d for 21 days. Then the mice were used for sample collection.</p><p><strong>Results: </strong>Our results demonstrate that NR can significantly mitigate radiation-induced intestinal senescence. Furthermore, our findings indicate that NR can mitigate oxidative damage, restore the normal function of intestinal stem cells, regulate the disruption of the intestinal symbiotic ecosystem and address metabolic abnormalities. In addition, the underlying mechanisms involve the activation of SIRT6, SIRT7 and the inhibition of the mTORC1 pathway by NR.</p><p><strong>Conclusion: </strong>In conclusion, our results reveal the substantial inhibitory effects of NR on radiation-induced intestinal senescence. These findings offer valuable insights into the potential therapeutic use of NR as a pharmacological agent for alleviating intestinal DEARE.</p>","PeriodicalId":94063,"journal":{"name":"Journal of advanced research","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nicotinamide riboside alleviates ionizing radiation-induced intestinal senescence by alleviating oxidative damage and regulating intestinal metabolism.\",\"authors\":\"Tongpeng Yue, Yinping Dong, Qidong Huo, Wenxuan Li, Xinyue Wang, Shiyi Zhang, Huirong Fan, Xin Wu, Xin He, Yu Zhao, Deguan Li\",\"doi\":\"10.1016/j.jare.2024.07.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>The intestine, frequently subjected to pelvic or abdominal radiotherapy, is particularly vulnerable to delayed effects of acute radiation exposure (DEARE) owing to its high radiation sensitivity. Radiation-induced intestinal senescence, a result of DEARE, profoundly affects the well-being and quality of life of radiotherapy patients. However, targeted pharmaceutical interventions for radiation-induced senescence are currently scarce. Our findings showcase that nicotinamide riboside(NR) effectively alleviates radiation-induced intestinal senescence, offering crucial implications for utilizing NR as a pharmacological agent to combat intestinal DEARE.</p><p><strong>Objectives: </strong>The aim of this study was to investigate the ability of NR to reduce radiation induced intestinal senescence and explore its related mechanisms.</p><p><strong>Methods: </strong>Male C57BL/6J mice were randomly divided into CON, IR, and IR + NR groups. The mice in the IR and IR + NR groups were subjected to a 6.0 Gy γ-ray total body exposure. After 8 weeks, the mice in the IR + NR group received NR via gavage at a dose of 400 mg/kg/d for 21 days. Then the mice were used for sample collection.</p><p><strong>Results: </strong>Our results demonstrate that NR can significantly mitigate radiation-induced intestinal senescence. Furthermore, our findings indicate that NR can mitigate oxidative damage, restore the normal function of intestinal stem cells, regulate the disruption of the intestinal symbiotic ecosystem and address metabolic abnormalities. In addition, the underlying mechanisms involve the activation of SIRT6, SIRT7 and the inhibition of the mTORC1 pathway by NR.</p><p><strong>Conclusion: </strong>In conclusion, our results reveal the substantial inhibitory effects of NR on radiation-induced intestinal senescence. These findings offer valuable insights into the potential therapeutic use of NR as a pharmacological agent for alleviating intestinal DEARE.</p>\",\"PeriodicalId\":94063,\"journal\":{\"name\":\"Journal of advanced research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of advanced research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jare.2024.07.010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of advanced research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jare.2024.07.010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

导言:肠道经常接受盆腔或腹部放疗,由于其对辐射高度敏感,特别容易受到急性辐射照射的延迟效应(DEARE)的影响。辐射诱发的肠道衰老(DEARE)严重影响了放疗患者的健康和生活质量。然而,目前针对辐射诱导衰老的靶向药物干预还很少。我们的研究结果表明,烟酰胺核糖甙(NR)能有效缓解辐射诱导的肠道衰老,为利用 NR 作为药理制剂对抗肠道 DEARE 提供了重要意义:本研究旨在研究 NR 能否减轻辐射诱导的肠道衰老,并探索其相关机制:雄性 C57BL/6J 小鼠被随机分为 CON 组、IR 组和 IR + NR 组。IR组和IR + NR组的小鼠接受6.0 Gy γ射线全身照射。8 周后,IR + NR 组小鼠通过灌胃接受 NR,剂量为 400 mg/kg/d,持续 21 天。然后小鼠被用于样本采集:结果:我们的研究结果表明,NR 能显著缓解辐射诱导的肠道衰老。此外,我们的研究结果表明,NR 可以减轻氧化损伤,恢复肠道干细胞的正常功能,调节肠道共生生态系统的破坏,并解决代谢异常问题。此外,其潜在机制还包括 NR 激活 SIRT6、SIRT7 和抑制 mTORC1 通路:总之,我们的研究结果揭示了 NR 对辐射诱导的肠道衰老的实质性抑制作用。这些发现为将 NR 用作缓解肠道 DEARE 的潜在治疗药剂提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nicotinamide riboside alleviates ionizing radiation-induced intestinal senescence by alleviating oxidative damage and regulating intestinal metabolism.

Introduction: The intestine, frequently subjected to pelvic or abdominal radiotherapy, is particularly vulnerable to delayed effects of acute radiation exposure (DEARE) owing to its high radiation sensitivity. Radiation-induced intestinal senescence, a result of DEARE, profoundly affects the well-being and quality of life of radiotherapy patients. However, targeted pharmaceutical interventions for radiation-induced senescence are currently scarce. Our findings showcase that nicotinamide riboside(NR) effectively alleviates radiation-induced intestinal senescence, offering crucial implications for utilizing NR as a pharmacological agent to combat intestinal DEARE.

Objectives: The aim of this study was to investigate the ability of NR to reduce radiation induced intestinal senescence and explore its related mechanisms.

Methods: Male C57BL/6J mice were randomly divided into CON, IR, and IR + NR groups. The mice in the IR and IR + NR groups were subjected to a 6.0 Gy γ-ray total body exposure. After 8 weeks, the mice in the IR + NR group received NR via gavage at a dose of 400 mg/kg/d for 21 days. Then the mice were used for sample collection.

Results: Our results demonstrate that NR can significantly mitigate radiation-induced intestinal senescence. Furthermore, our findings indicate that NR can mitigate oxidative damage, restore the normal function of intestinal stem cells, regulate the disruption of the intestinal symbiotic ecosystem and address metabolic abnormalities. In addition, the underlying mechanisms involve the activation of SIRT6, SIRT7 and the inhibition of the mTORC1 pathway by NR.

Conclusion: In conclusion, our results reveal the substantial inhibitory effects of NR on radiation-induced intestinal senescence. These findings offer valuable insights into the potential therapeutic use of NR as a pharmacological agent for alleviating intestinal DEARE.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信