医学基础模型的多任务学习。

IF 12 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Jiancheng Yang
{"title":"医学基础模型的多任务学习。","authors":"Jiancheng Yang","doi":"10.1038/s43588-024-00658-9","DOIUrl":null,"url":null,"abstract":"To address the challenge of pretraining foundational models with large datasets, a multi-task approach is proposed, thus helping to overcome the data scarcity problem in biomedical imaging.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":"4 7","pages":"473-474"},"PeriodicalIF":12.0000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-task learning for medical foundation models\",\"authors\":\"Jiancheng Yang\",\"doi\":\"10.1038/s43588-024-00658-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To address the challenge of pretraining foundational models with large datasets, a multi-task approach is proposed, thus helping to overcome the data scarcity problem in biomedical imaging.\",\"PeriodicalId\":74246,\"journal\":{\"name\":\"Nature computational science\",\"volume\":\"4 7\",\"pages\":\"473-474\"},\"PeriodicalIF\":12.0000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature computational science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s43588-024-00658-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43588-024-00658-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

为了应对使用大型数据集对基础模型进行预训练的挑战,我们提出了一种多任务方法,从而帮助克服生物医学成像中的数据稀缺问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Multi-task learning for medical foundation models

Multi-task learning for medical foundation models

Multi-task learning for medical foundation models
To address the challenge of pretraining foundational models with large datasets, a multi-task approach is proposed, thus helping to overcome the data scarcity problem in biomedical imaging.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信