Félix Camirand Lemyre, Simon Lévesque, Marie-Pier Domingue, Klaus Herrmann, Jean-François Ethier
{"title":"分布式统计分析:范围审查和适用于健康分析的操作框架实例》。","authors":"Félix Camirand Lemyre, Simon Lévesque, Marie-Pier Domingue, Klaus Herrmann, Jean-François Ethier","doi":"10.2196/53622","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Data from multiple organizations are crucial for advancing learning health systems. However, ethical, legal, and social concerns may restrict the use of standard statistical methods that rely on pooling data. Although distributed algorithms offer alternatives, they may not always be suitable for health frameworks.</p><p><strong>Objective: </strong>This paper aims to support researchers and data custodians in three ways: (1) providing a concise overview of the literature on statistical inference methods for horizontally partitioned data; (2) describing the methods applicable to generalized linear models (GLM) and assessing their underlying distributional assumptions; (3) adapting existing methods to make them fully usable in health settings.</p><p><strong>Methods: </strong>A scoping review methodology was employed for the literature mapping, from which methods presenting a methodological framework for GLM analyses with horizontally partitioned data were identified and assessed from the perspective of applicability in health settings. Statistical theory was used to adapt methods and to derive the properties of the resulting estimators.</p><p><strong>Results: </strong>From the review, 41 articles were selected, and six approaches were extracted for conducting standard GLM-based statistical analysis. However, these approaches assumed evenly and identically distributed data across nodes. Consequently, statistical procedures were derived to accommodate uneven node sample sizes and heterogeneous data distributions across nodes. Workflows and detailed algorithms were developed to highlight information-sharing requirements and operational complexity.</p><p><strong>Conclusions: </strong>This paper contributes to the field of health analytics by providing an overview of the methods that can be used with horizontally partitioned data, by adapting these methods to the context of heterogeneous health data and by clarifying the workflows and quantities exchanged by the methods discussed. Further analysis of the confidentiality preserved by these methods is needed to fully understand the risk associated with the sharing of summary statistics.</p>","PeriodicalId":56334,"journal":{"name":"JMIR Medical Informatics","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distributed Statistical Analyses: A Scoping Review and Examples of Operational Frameworks Adapted to Health Analytics.\",\"authors\":\"Félix Camirand Lemyre, Simon Lévesque, Marie-Pier Domingue, Klaus Herrmann, Jean-François Ethier\",\"doi\":\"10.2196/53622\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Data from multiple organizations are crucial for advancing learning health systems. However, ethical, legal, and social concerns may restrict the use of standard statistical methods that rely on pooling data. Although distributed algorithms offer alternatives, they may not always be suitable for health frameworks.</p><p><strong>Objective: </strong>This paper aims to support researchers and data custodians in three ways: (1) providing a concise overview of the literature on statistical inference methods for horizontally partitioned data; (2) describing the methods applicable to generalized linear models (GLM) and assessing their underlying distributional assumptions; (3) adapting existing methods to make them fully usable in health settings.</p><p><strong>Methods: </strong>A scoping review methodology was employed for the literature mapping, from which methods presenting a methodological framework for GLM analyses with horizontally partitioned data were identified and assessed from the perspective of applicability in health settings. Statistical theory was used to adapt methods and to derive the properties of the resulting estimators.</p><p><strong>Results: </strong>From the review, 41 articles were selected, and six approaches were extracted for conducting standard GLM-based statistical analysis. However, these approaches assumed evenly and identically distributed data across nodes. Consequently, statistical procedures were derived to accommodate uneven node sample sizes and heterogeneous data distributions across nodes. Workflows and detailed algorithms were developed to highlight information-sharing requirements and operational complexity.</p><p><strong>Conclusions: </strong>This paper contributes to the field of health analytics by providing an overview of the methods that can be used with horizontally partitioned data, by adapting these methods to the context of heterogeneous health data and by clarifying the workflows and quantities exchanged by the methods discussed. Further analysis of the confidentiality preserved by these methods is needed to fully understand the risk associated with the sharing of summary statistics.</p>\",\"PeriodicalId\":56334,\"journal\":{\"name\":\"JMIR Medical Informatics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JMIR Medical Informatics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2196/53622\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICAL INFORMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR Medical Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2196/53622","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
Distributed Statistical Analyses: A Scoping Review and Examples of Operational Frameworks Adapted to Health Analytics.
Background: Data from multiple organizations are crucial for advancing learning health systems. However, ethical, legal, and social concerns may restrict the use of standard statistical methods that rely on pooling data. Although distributed algorithms offer alternatives, they may not always be suitable for health frameworks.
Objective: This paper aims to support researchers and data custodians in three ways: (1) providing a concise overview of the literature on statistical inference methods for horizontally partitioned data; (2) describing the methods applicable to generalized linear models (GLM) and assessing their underlying distributional assumptions; (3) adapting existing methods to make them fully usable in health settings.
Methods: A scoping review methodology was employed for the literature mapping, from which methods presenting a methodological framework for GLM analyses with horizontally partitioned data were identified and assessed from the perspective of applicability in health settings. Statistical theory was used to adapt methods and to derive the properties of the resulting estimators.
Results: From the review, 41 articles were selected, and six approaches were extracted for conducting standard GLM-based statistical analysis. However, these approaches assumed evenly and identically distributed data across nodes. Consequently, statistical procedures were derived to accommodate uneven node sample sizes and heterogeneous data distributions across nodes. Workflows and detailed algorithms were developed to highlight information-sharing requirements and operational complexity.
Conclusions: This paper contributes to the field of health analytics by providing an overview of the methods that can be used with horizontally partitioned data, by adapting these methods to the context of heterogeneous health data and by clarifying the workflows and quantities exchanged by the methods discussed. Further analysis of the confidentiality preserved by these methods is needed to fully understand the risk associated with the sharing of summary statistics.
期刊介绍:
JMIR Medical Informatics (JMI, ISSN 2291-9694) is a top-rated, tier A journal which focuses on clinical informatics, big data in health and health care, decision support for health professionals, electronic health records, ehealth infrastructures and implementation. It has a focus on applied, translational research, with a broad readership including clinicians, CIOs, engineers, industry and health informatics professionals.
Published by JMIR Publications, publisher of the Journal of Medical Internet Research (JMIR), the leading eHealth/mHealth journal (Impact Factor 2016: 5.175), JMIR Med Inform has a slightly different scope (emphasizing more on applications for clinicians and health professionals rather than consumers/citizens, which is the focus of JMIR), publishes even faster, and also allows papers which are more technical or more formative than what would be published in the Journal of Medical Internet Research.