{"title":"增强前列腺癌诊断:人工智能驱动的虚拟活检以优化 MRI 靶向活检方法和格里森分级策略。","authors":"","doi":"10.1016/j.modpat.2024.100564","DOIUrl":null,"url":null,"abstract":"<div><p>An optimal approach to magnetic resonance imaging fusion targeted prostate biopsy (PBx) remains unclear (number of cores, intercore distance, Gleason grading [GG] principle). The aim of this study was to develop a precise pixel-wise segmentation diagnostic artificial intelligence (AI) algorithm for tumor detection and GG as well as an algorithm for virtual prostate biopsy that are used together to systematically investigate and find an optimal approach to targeted PBx. Pixel-wise AI algorithms for tumor detection and GG were developed using a high-quality, manually annotated data set (slides n = 442) after fast-track annotation transfer into segmentation style. To this end, a virtual biopsy algorithm was developed that can perform random biopsies from tumor regions in whole-mount whole-slide images with predefined parameters. A cohort of 115 radical prostatectomy (RP) patient cases with clinically significant, magnetic resonance imaging-visible tumors (n = 121) was used for systematic studies of the optimal biopsy approach. Three expert genitourinary (GU) pathologists (Y.T., A.P., A.Q.) participated in the validation. The tumor detection algorithm (aware version sensitivity/specificity 0.99/0.90, balanced version 0.97/0.97) and GG algorithm (quadratic kappa range vs pathologists 0.77-0.78) perform on par with expert GU pathologists. In total, 65,340 virtual biopsies were performed to study different biopsy approaches with the following results: (1) 4 biopsy cores is the optimal number for a targeted PBx, (2) cumulative GG strategy is superior to using maximal Gleason score for single cores, (3) controlling for minimal intercore distance does not improve the predictive accuracy for the RP Gleason score, (4) using tertiary Gleason pattern principle (for AI tool) in cumulative GG strategy might allow better predictions of final RP Gleason score. The AI algorithm (based on cumulative GG strategy) predicted the RP Gleason score of the tumor better than 2 of the 3 expert GU pathologists. In this study, using an original approach of virtual prostate biopsy on the real cohort of patient cases, we find the optimal approach to the biopsy procedure and the subsequent GG of a targeted PBx. We publicly release 2 large data sets with associated expert pathologists’ GG and our virtual biopsy algorithm.</p></div>","PeriodicalId":18706,"journal":{"name":"Modern Pathology","volume":null,"pages":null},"PeriodicalIF":7.1000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0893395224001443/pdfft?md5=0f4b4a77b04b588b9e6833ca66915ca0&pid=1-s2.0-S0893395224001443-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Enhancing Prostate Cancer Diagnosis: Artificial intelligence-Driven Virtual Biopsy for Optimal Magnetic Resonance Imaging-Targeted Biopsy Approach and Gleason Grading Strategy\",\"authors\":\"\",\"doi\":\"10.1016/j.modpat.2024.100564\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>An optimal approach to magnetic resonance imaging fusion targeted prostate biopsy (PBx) remains unclear (number of cores, intercore distance, Gleason grading [GG] principle). The aim of this study was to develop a precise pixel-wise segmentation diagnostic artificial intelligence (AI) algorithm for tumor detection and GG as well as an algorithm for virtual prostate biopsy that are used together to systematically investigate and find an optimal approach to targeted PBx. Pixel-wise AI algorithms for tumor detection and GG were developed using a high-quality, manually annotated data set (slides n = 442) after fast-track annotation transfer into segmentation style. To this end, a virtual biopsy algorithm was developed that can perform random biopsies from tumor regions in whole-mount whole-slide images with predefined parameters. A cohort of 115 radical prostatectomy (RP) patient cases with clinically significant, magnetic resonance imaging-visible tumors (n = 121) was used for systematic studies of the optimal biopsy approach. Three expert genitourinary (GU) pathologists (Y.T., A.P., A.Q.) participated in the validation. The tumor detection algorithm (aware version sensitivity/specificity 0.99/0.90, balanced version 0.97/0.97) and GG algorithm (quadratic kappa range vs pathologists 0.77-0.78) perform on par with expert GU pathologists. In total, 65,340 virtual biopsies were performed to study different biopsy approaches with the following results: (1) 4 biopsy cores is the optimal number for a targeted PBx, (2) cumulative GG strategy is superior to using maximal Gleason score for single cores, (3) controlling for minimal intercore distance does not improve the predictive accuracy for the RP Gleason score, (4) using tertiary Gleason pattern principle (for AI tool) in cumulative GG strategy might allow better predictions of final RP Gleason score. The AI algorithm (based on cumulative GG strategy) predicted the RP Gleason score of the tumor better than 2 of the 3 expert GU pathologists. In this study, using an original approach of virtual prostate biopsy on the real cohort of patient cases, we find the optimal approach to the biopsy procedure and the subsequent GG of a targeted PBx. We publicly release 2 large data sets with associated expert pathologists’ GG and our virtual biopsy algorithm.</p></div>\",\"PeriodicalId\":18706,\"journal\":{\"name\":\"Modern Pathology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0893395224001443/pdfft?md5=0f4b4a77b04b588b9e6833ca66915ca0&pid=1-s2.0-S0893395224001443-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modern Pathology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893395224001443\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Pathology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893395224001443","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PATHOLOGY","Score":null,"Total":0}
Enhancing Prostate Cancer Diagnosis: Artificial intelligence-Driven Virtual Biopsy for Optimal Magnetic Resonance Imaging-Targeted Biopsy Approach and Gleason Grading Strategy
An optimal approach to magnetic resonance imaging fusion targeted prostate biopsy (PBx) remains unclear (number of cores, intercore distance, Gleason grading [GG] principle). The aim of this study was to develop a precise pixel-wise segmentation diagnostic artificial intelligence (AI) algorithm for tumor detection and GG as well as an algorithm for virtual prostate biopsy that are used together to systematically investigate and find an optimal approach to targeted PBx. Pixel-wise AI algorithms for tumor detection and GG were developed using a high-quality, manually annotated data set (slides n = 442) after fast-track annotation transfer into segmentation style. To this end, a virtual biopsy algorithm was developed that can perform random biopsies from tumor regions in whole-mount whole-slide images with predefined parameters. A cohort of 115 radical prostatectomy (RP) patient cases with clinically significant, magnetic resonance imaging-visible tumors (n = 121) was used for systematic studies of the optimal biopsy approach. Three expert genitourinary (GU) pathologists (Y.T., A.P., A.Q.) participated in the validation. The tumor detection algorithm (aware version sensitivity/specificity 0.99/0.90, balanced version 0.97/0.97) and GG algorithm (quadratic kappa range vs pathologists 0.77-0.78) perform on par with expert GU pathologists. In total, 65,340 virtual biopsies were performed to study different biopsy approaches with the following results: (1) 4 biopsy cores is the optimal number for a targeted PBx, (2) cumulative GG strategy is superior to using maximal Gleason score for single cores, (3) controlling for minimal intercore distance does not improve the predictive accuracy for the RP Gleason score, (4) using tertiary Gleason pattern principle (for AI tool) in cumulative GG strategy might allow better predictions of final RP Gleason score. The AI algorithm (based on cumulative GG strategy) predicted the RP Gleason score of the tumor better than 2 of the 3 expert GU pathologists. In this study, using an original approach of virtual prostate biopsy on the real cohort of patient cases, we find the optimal approach to the biopsy procedure and the subsequent GG of a targeted PBx. We publicly release 2 large data sets with associated expert pathologists’ GG and our virtual biopsy algorithm.
期刊介绍:
Modern Pathology, an international journal under the ownership of The United States & Canadian Academy of Pathology (USCAP), serves as an authoritative platform for publishing top-tier clinical and translational research studies in pathology.
Original manuscripts are the primary focus of Modern Pathology, complemented by impactful editorials, reviews, and practice guidelines covering all facets of precision diagnostics in human pathology. The journal's scope includes advancements in molecular diagnostics and genomic classifications of diseases, breakthroughs in immune-oncology, computational science, applied bioinformatics, and digital pathology.