{"title":"GSC:高效无损压缩 VCF 文件,查询速度快。","authors":"Xiaolong Luo, Yuxin Chen, Ling Liu, Lulu Ding, Yuxiang Li, Shengkang Li, Yong Zhang, Zexuan Zhu","doi":"10.1093/gigascience/giae046","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>With the rise of large-scale genome sequencing projects, genotyping of thousands of samples has produced immense variant call format (VCF) files. It is becoming increasingly challenging to store, transfer, and analyze these voluminous files. Compression methods have been used to tackle these issues, aiming for both high compression ratio and fast random access. However, existing methods have not yet achieved a satisfactory compromise between these 2 objectives.</p><p><strong>Findings: </strong>To address the aforementioned issue, we introduce GSC (Genotype Sparse Compression), a specialized and refined lossless compression tool for VCF files. In benchmark tests conducted across various open-source datasets, GSC showcased exceptional performance in genotype data compression. Compared with the industry's most advanced tools (namely, GBC and GTC), GSC achieved compression ratios that were higher by 26.9% to 82.4% over GBC and GTC on the datasets, respectively. In lossless compression scenarios, GSC also demonstrated robust performance, with compression ratios 1.5× to 6.5× greater than general-purpose tools like gzip, zstd, and BCFtools-a mode not supported by either GBC or GTC. Achieving such high compression ratios did require some reasonable trade-offs, including longer decompression times, with GSC being 1.2× to 2× slower than GBC, yet 1.1× to 1.4× faster than GTC. Moreover, GSC maintained decompression query speeds that were equivalent to its competitors. In terms of RAM usage, GSC outperformed both counterparts. Overall, GSC's comprehensive performance surpasses that of the most advanced technologies.</p><p><strong>Conclusion: </strong>GSC balances high compression ratios with rapid data access, enhancing genomic data management. It supports seamless PLINK binary format conversion, simplifying downstream analysis.</p>","PeriodicalId":12581,"journal":{"name":"GigaScience","volume":null,"pages":null},"PeriodicalIF":11.8000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11258903/pdf/","citationCount":"0","resultStr":"{\"title\":\"GSC: efficient lossless compression of VCF files with fast query.\",\"authors\":\"Xiaolong Luo, Yuxin Chen, Ling Liu, Lulu Ding, Yuxiang Li, Shengkang Li, Yong Zhang, Zexuan Zhu\",\"doi\":\"10.1093/gigascience/giae046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>With the rise of large-scale genome sequencing projects, genotyping of thousands of samples has produced immense variant call format (VCF) files. It is becoming increasingly challenging to store, transfer, and analyze these voluminous files. Compression methods have been used to tackle these issues, aiming for both high compression ratio and fast random access. However, existing methods have not yet achieved a satisfactory compromise between these 2 objectives.</p><p><strong>Findings: </strong>To address the aforementioned issue, we introduce GSC (Genotype Sparse Compression), a specialized and refined lossless compression tool for VCF files. In benchmark tests conducted across various open-source datasets, GSC showcased exceptional performance in genotype data compression. Compared with the industry's most advanced tools (namely, GBC and GTC), GSC achieved compression ratios that were higher by 26.9% to 82.4% over GBC and GTC on the datasets, respectively. In lossless compression scenarios, GSC also demonstrated robust performance, with compression ratios 1.5× to 6.5× greater than general-purpose tools like gzip, zstd, and BCFtools-a mode not supported by either GBC or GTC. Achieving such high compression ratios did require some reasonable trade-offs, including longer decompression times, with GSC being 1.2× to 2× slower than GBC, yet 1.1× to 1.4× faster than GTC. Moreover, GSC maintained decompression query speeds that were equivalent to its competitors. In terms of RAM usage, GSC outperformed both counterparts. Overall, GSC's comprehensive performance surpasses that of the most advanced technologies.</p><p><strong>Conclusion: </strong>GSC balances high compression ratios with rapid data access, enhancing genomic data management. It supports seamless PLINK binary format conversion, simplifying downstream analysis.</p>\",\"PeriodicalId\":12581,\"journal\":{\"name\":\"GigaScience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.8000,\"publicationDate\":\"2024-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11258903/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GigaScience\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/gigascience/giae046\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GigaScience","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/gigascience/giae046","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
GSC: efficient lossless compression of VCF files with fast query.
Background: With the rise of large-scale genome sequencing projects, genotyping of thousands of samples has produced immense variant call format (VCF) files. It is becoming increasingly challenging to store, transfer, and analyze these voluminous files. Compression methods have been used to tackle these issues, aiming for both high compression ratio and fast random access. However, existing methods have not yet achieved a satisfactory compromise between these 2 objectives.
Findings: To address the aforementioned issue, we introduce GSC (Genotype Sparse Compression), a specialized and refined lossless compression tool for VCF files. In benchmark tests conducted across various open-source datasets, GSC showcased exceptional performance in genotype data compression. Compared with the industry's most advanced tools (namely, GBC and GTC), GSC achieved compression ratios that were higher by 26.9% to 82.4% over GBC and GTC on the datasets, respectively. In lossless compression scenarios, GSC also demonstrated robust performance, with compression ratios 1.5× to 6.5× greater than general-purpose tools like gzip, zstd, and BCFtools-a mode not supported by either GBC or GTC. Achieving such high compression ratios did require some reasonable trade-offs, including longer decompression times, with GSC being 1.2× to 2× slower than GBC, yet 1.1× to 1.4× faster than GTC. Moreover, GSC maintained decompression query speeds that were equivalent to its competitors. In terms of RAM usage, GSC outperformed both counterparts. Overall, GSC's comprehensive performance surpasses that of the most advanced technologies.
Conclusion: GSC balances high compression ratios with rapid data access, enhancing genomic data management. It supports seamless PLINK binary format conversion, simplifying downstream analysis.
期刊介绍:
GigaScience seeks to transform data dissemination and utilization in the life and biomedical sciences. As an online open-access open-data journal, it specializes in publishing "big-data" studies encompassing various fields. Its scope includes not only "omic" type data and the fields of high-throughput biology currently serviced by large public repositories, but also the growing range of more difficult-to-access data, such as imaging, neuroscience, ecology, cohort data, systems biology and other new types of large-scale shareable data.