通过对一种 GABABR 癫痫变体的正向异构调节逆转突触前过度兴奋。

IF 10.6 1区 医学 Q1 CLINICAL NEUROLOGY
Brain Pub Date : 2025-02-03 DOI:10.1093/brain/awae232
Marielle Minere, Martin Mortensen, Valentina Dorovykh, Gary Warnes, Dean Nizetic, Trevor G Smart, Saad B Hannan
{"title":"通过对一种 GABABR 癫痫变体的正向异构调节逆转突触前过度兴奋。","authors":"Marielle Minere, Martin Mortensen, Valentina Dorovykh, Gary Warnes, Dean Nizetic, Trevor G Smart, Saad B Hannan","doi":"10.1093/brain/awae232","DOIUrl":null,"url":null,"abstract":"<p><p>GABABRs are key membrane proteins that continually adapt the excitability of the nervous system. These G-protein coupled receptors are activated by the brain's premier inhibitory neurotransmitter GABA. They are obligate heterodimers composed of GABA-binding GABABR1 and G-protein-coupling GABABR2 subunits. Recently, three variants (G693W, S695I, I705N) have been identified in the gene (GABBR2) encoding for GABABR2. Individuals that harbour any of these variants exhibit severe developmental epileptic encephalopathy and intellectual disability, but the underlying pathogenesis that is triggered in neurons remains unresolved. Using a range of confocal imaging, flow cytometry, structural modelling, biochemistry, live cell Ca2+ imaging of presynaptic terminals, whole-cell electrophysiology of human embryonic kidney (HEK)-293 T cells and neurons and two-electrode voltage clamping of Xenopus oocytes, we have probed the biophysical and molecular trafficking and functional profiles of G693W, S695I and I705N variants. We report that all three point mutations impair neuronal cell surface expression of GABABRs, reducing signalling efficacy. However, a negative effect evident for one variant perturbed neurotransmission by elevating presynaptic Ca2+ signalling. This is reversed by enhancing GABABR signalling via positive allosteric modulation. Our results highlight the importance of studying neuronal receptors expressed in nervous system tissue and provide new mechanistic insights into how GABABR variants can initiate neurodevelopmental disease whilst highlighting the translational suitability and therapeutic potential of allosteric modulation for correcting these deficits.</p>","PeriodicalId":9063,"journal":{"name":"Brain","volume":" ","pages":"533-548"},"PeriodicalIF":10.6000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11788220/pdf/","citationCount":"0","resultStr":"{\"title\":\"Presynaptic hyperexcitability reversed by positive allosteric modulation of a GABABR epilepsy variant.\",\"authors\":\"Marielle Minere, Martin Mortensen, Valentina Dorovykh, Gary Warnes, Dean Nizetic, Trevor G Smart, Saad B Hannan\",\"doi\":\"10.1093/brain/awae232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>GABABRs are key membrane proteins that continually adapt the excitability of the nervous system. These G-protein coupled receptors are activated by the brain's premier inhibitory neurotransmitter GABA. They are obligate heterodimers composed of GABA-binding GABABR1 and G-protein-coupling GABABR2 subunits. Recently, three variants (G693W, S695I, I705N) have been identified in the gene (GABBR2) encoding for GABABR2. Individuals that harbour any of these variants exhibit severe developmental epileptic encephalopathy and intellectual disability, but the underlying pathogenesis that is triggered in neurons remains unresolved. Using a range of confocal imaging, flow cytometry, structural modelling, biochemistry, live cell Ca2+ imaging of presynaptic terminals, whole-cell electrophysiology of human embryonic kidney (HEK)-293 T cells and neurons and two-electrode voltage clamping of Xenopus oocytes, we have probed the biophysical and molecular trafficking and functional profiles of G693W, S695I and I705N variants. We report that all three point mutations impair neuronal cell surface expression of GABABRs, reducing signalling efficacy. However, a negative effect evident for one variant perturbed neurotransmission by elevating presynaptic Ca2+ signalling. This is reversed by enhancing GABABR signalling via positive allosteric modulation. Our results highlight the importance of studying neuronal receptors expressed in nervous system tissue and provide new mechanistic insights into how GABABR variants can initiate neurodevelopmental disease whilst highlighting the translational suitability and therapeutic potential of allosteric modulation for correcting these deficits.</p>\",\"PeriodicalId\":9063,\"journal\":{\"name\":\"Brain\",\"volume\":\" \",\"pages\":\"533-548\"},\"PeriodicalIF\":10.6000,\"publicationDate\":\"2025-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11788220/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/brain/awae232\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/brain/awae232","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

GABABR 是一种关键的膜蛋白,能不断调节神经系统的兴奋性。这些 G 蛋白偶联受体由大脑主要的抑制性神经递质 GABA 激活。它们是由 GABA 结合型 GABABR1 和 G 蛋白偶联型 GABABR2 亚基组成的强制性异二聚体。最近,在编码 GABABR2 的基因(GABBR2)中发现了三个变体(G693W、S695I 和 I705N)。携带其中任何一种变体的个体都会表现出严重的发育性癫痫脑病和智力障碍,但在神经元中触发的潜在发病机制仍未得到解决。我们利用一系列共焦成像、流式细胞术、结构建模、生物化学、突触前终端的活细胞 Ca2+ 成像、HEK-293T 细胞和神经元的全细胞电生理学以及爪蟾卵母细胞的双电极电压箝位技术,对 G693W、S695I 和 I705N 变体的生物物理和分子贩运及功能特征进行了探究。我们发现,所有这三种点突变都会损害 GABABRs 在神经元细胞表面的表达,从而降低信号传导效率。然而,一个变体的明显负面影响是通过提高突触前 Ca2+ 信号来扰乱神经传递。而通过正异位调节增强 GABABR 信号则可逆转这种效应。我们的研究结果凸显了研究神经系统组织中表达的神经元受体的重要性,并为了解 GABABR 变异如何引发神经发育疾病提供了新的机理认识,同时强调了异源调节在纠正这些缺陷方面的转化适宜性和治疗潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Presynaptic hyperexcitability reversed by positive allosteric modulation of a GABABR epilepsy variant.

GABABRs are key membrane proteins that continually adapt the excitability of the nervous system. These G-protein coupled receptors are activated by the brain's premier inhibitory neurotransmitter GABA. They are obligate heterodimers composed of GABA-binding GABABR1 and G-protein-coupling GABABR2 subunits. Recently, three variants (G693W, S695I, I705N) have been identified in the gene (GABBR2) encoding for GABABR2. Individuals that harbour any of these variants exhibit severe developmental epileptic encephalopathy and intellectual disability, but the underlying pathogenesis that is triggered in neurons remains unresolved. Using a range of confocal imaging, flow cytometry, structural modelling, biochemistry, live cell Ca2+ imaging of presynaptic terminals, whole-cell electrophysiology of human embryonic kidney (HEK)-293 T cells and neurons and two-electrode voltage clamping of Xenopus oocytes, we have probed the biophysical and molecular trafficking and functional profiles of G693W, S695I and I705N variants. We report that all three point mutations impair neuronal cell surface expression of GABABRs, reducing signalling efficacy. However, a negative effect evident for one variant perturbed neurotransmission by elevating presynaptic Ca2+ signalling. This is reversed by enhancing GABABR signalling via positive allosteric modulation. Our results highlight the importance of studying neuronal receptors expressed in nervous system tissue and provide new mechanistic insights into how GABABR variants can initiate neurodevelopmental disease whilst highlighting the translational suitability and therapeutic potential of allosteric modulation for correcting these deficits.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Brain
Brain 医学-临床神经学
CiteScore
20.30
自引率
4.10%
发文量
458
审稿时长
3-6 weeks
期刊介绍: Brain, a journal focused on clinical neurology and translational neuroscience, has been publishing landmark papers since 1878. The journal aims to expand its scope by including studies that shed light on disease mechanisms and conducting innovative clinical trials for brain disorders. With a wide range of topics covered, the Editorial Board represents the international readership and diverse coverage of the journal. Accepted articles are promptly posted online, typically within a few weeks of acceptance. As of 2022, Brain holds an impressive impact factor of 14.5, according to the Journal Citation Reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信