CRTAC1 有一个由钾离子稳定的紧凑型β-推进器-TTR 核心。

IF 4.7 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
{"title":"CRTAC1 有一个由钾离子稳定的紧凑型β-推进器-TTR 核心。","authors":"","doi":"10.1016/j.jmb.2024.168712","DOIUrl":null,"url":null,"abstract":"<div><p>Cartilage acidic protein-1 (CRTAC1) is a secreted glycoprotein with roles in development, function and repair of the nervous system. It is linked to ischemic stroke, osteoarthritis and (long) COVID outcomes, and has suppressive activity in carcinoma and bladder cancer. Structural characterization of CRTAC1 has been complicated by its tendency to form disulfide-linked aggregates. Here, we show that CRTAC1 is stabilized by potassium ions. Using x-ray crystallography, we determined the structure of CRTAC1 to 1.6 Å. This reveals that the protein consists of a three-domain fold, including a previously-unreported compact β-propeller–TTR combination, in which an extended loop of the TTR plugs the β-propeller core. Electron density is observed for ten bound ions: six calcium, three potassium and one sodium. Low potassium ion concentrations lead to changes in tryptophan environment and exposure of two buried free cysteines located on a β-blade and in the β-propeller-plugging TTR loop. Mutating the two free cysteines to serines prevents covalent intermolecular interactions, but not aggregation, in absence of potassium ions. The potassium ion binding sites are located between the blades of the β-propeller, explaining their importance for the stability of the CRTAC1 fold. Despite varying in sequence, the three potassium ion binding sites are structurally similar and conserved features of the CRTAC protein family. These insights into the stability and structure of CRTAC1 provide a basis for further work into the function of CRTAC1 in health and disease.</p></div>","PeriodicalId":369,"journal":{"name":"Journal of Molecular Biology","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022283624003218/pdfft?md5=f7d76bbbcb87f758d8e22a4764cd5bf7&pid=1-s2.0-S0022283624003218-main.pdf","citationCount":"0","resultStr":"{\"title\":\"CRTAC1 has a Compact β-propeller–TTR Core Stabilized by Potassium Ions\",\"authors\":\"\",\"doi\":\"10.1016/j.jmb.2024.168712\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cartilage acidic protein-1 (CRTAC1) is a secreted glycoprotein with roles in development, function and repair of the nervous system. It is linked to ischemic stroke, osteoarthritis and (long) COVID outcomes, and has suppressive activity in carcinoma and bladder cancer. Structural characterization of CRTAC1 has been complicated by its tendency to form disulfide-linked aggregates. Here, we show that CRTAC1 is stabilized by potassium ions. Using x-ray crystallography, we determined the structure of CRTAC1 to 1.6 Å. This reveals that the protein consists of a three-domain fold, including a previously-unreported compact β-propeller–TTR combination, in which an extended loop of the TTR plugs the β-propeller core. Electron density is observed for ten bound ions: six calcium, three potassium and one sodium. Low potassium ion concentrations lead to changes in tryptophan environment and exposure of two buried free cysteines located on a β-blade and in the β-propeller-plugging TTR loop. Mutating the two free cysteines to serines prevents covalent intermolecular interactions, but not aggregation, in absence of potassium ions. The potassium ion binding sites are located between the blades of the β-propeller, explaining their importance for the stability of the CRTAC1 fold. Despite varying in sequence, the three potassium ion binding sites are structurally similar and conserved features of the CRTAC protein family. These insights into the stability and structure of CRTAC1 provide a basis for further work into the function of CRTAC1 in health and disease.</p></div>\",\"PeriodicalId\":369,\"journal\":{\"name\":\"Journal of Molecular Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0022283624003218/pdfft?md5=f7d76bbbcb87f758d8e22a4764cd5bf7&pid=1-s2.0-S0022283624003218-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022283624003218\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022283624003218","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

软骨酸性蛋白-1(CRTAC1)是一种分泌型糖蛋白,在神经系统的发育、功能和修复中发挥作用。它与缺血性中风、骨关节炎和(长期)COVID结果有关,并对癌和膀胱癌有抑制作用。CRTAC1 易于形成二硫键连接的聚集体,这使其结构特征的确定变得复杂。在这里,我们发现 CRTAC1 能被钾离子稳定。我们使用 X 射线晶体学方法测定了 CRTAC1 的 1.6 Å 结构,结果显示该蛋白质由三维折叠组成,其中包括以前未报道过的紧凑型 β-推进器-TTR 组合,在该组合中,TTR 的延伸环堵塞了 β-推进器核心。观察到十个结合离子的电子密度:六个钙离子、三个钾离子和一个钠离子。钾离子浓度过低会导致色氨酸环境发生变化,并暴露出位于β叶片上和β推进器插入 TTR 环中的两个埋藏的游离半胱氨酸。将这两个游离半胱氨酸突变为丝氨酸可以防止分子间的共价相互作用,但不能防止在没有钾离子的情况下发生聚集。钾离子结合位点位于β-螺旋桨叶片之间,因此它们对 CRTAC1 折叠的稳定性非常重要。尽管序列不同,但三个钾离子结合位点结构相似,是 CRTAC 蛋白家族的保守特征。这些对 CRTAC1 的稳定性和结构的深入了解为进一步研究 CRTAC1 在健康和疾病中的功能奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

CRTAC1 has a Compact β-propeller–TTR Core Stabilized by Potassium Ions

CRTAC1 has a Compact β-propeller–TTR Core Stabilized by Potassium Ions

Cartilage acidic protein-1 (CRTAC1) is a secreted glycoprotein with roles in development, function and repair of the nervous system. It is linked to ischemic stroke, osteoarthritis and (long) COVID outcomes, and has suppressive activity in carcinoma and bladder cancer. Structural characterization of CRTAC1 has been complicated by its tendency to form disulfide-linked aggregates. Here, we show that CRTAC1 is stabilized by potassium ions. Using x-ray crystallography, we determined the structure of CRTAC1 to 1.6 Å. This reveals that the protein consists of a three-domain fold, including a previously-unreported compact β-propeller–TTR combination, in which an extended loop of the TTR plugs the β-propeller core. Electron density is observed for ten bound ions: six calcium, three potassium and one sodium. Low potassium ion concentrations lead to changes in tryptophan environment and exposure of two buried free cysteines located on a β-blade and in the β-propeller-plugging TTR loop. Mutating the two free cysteines to serines prevents covalent intermolecular interactions, but not aggregation, in absence of potassium ions. The potassium ion binding sites are located between the blades of the β-propeller, explaining their importance for the stability of the CRTAC1 fold. Despite varying in sequence, the three potassium ion binding sites are structurally similar and conserved features of the CRTAC protein family. These insights into the stability and structure of CRTAC1 provide a basis for further work into the function of CRTAC1 in health and disease.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Molecular Biology
Journal of Molecular Biology 生物-生化与分子生物学
CiteScore
11.30
自引率
1.80%
发文量
412
审稿时长
28 days
期刊介绍: Journal of Molecular Biology (JMB) provides high quality, comprehensive and broad coverage in all areas of molecular biology. The journal publishes original scientific research papers that provide mechanistic and functional insights and report a significant advance to the field. The journal encourages the submission of multidisciplinary studies that use complementary experimental and computational approaches to address challenging biological questions. Research areas include but are not limited to: Biomolecular interactions, signaling networks, systems biology; Cell cycle, cell growth, cell differentiation; Cell death, autophagy; Cell signaling and regulation; Chemical biology; Computational biology, in combination with experimental studies; DNA replication, repair, and recombination; Development, regenerative biology, mechanistic and functional studies of stem cells; Epigenetics, chromatin structure and function; Gene expression; Membrane processes, cell surface proteins and cell-cell interactions; Methodological advances, both experimental and theoretical, including databases; Microbiology, virology, and interactions with the host or environment; Microbiota mechanistic and functional studies; Nuclear organization; Post-translational modifications, proteomics; Processing and function of biologically important macromolecules and complexes; Molecular basis of disease; RNA processing, structure and functions of non-coding RNAs, transcription; Sorting, spatiotemporal organization, trafficking; Structural biology; Synthetic biology; Translation, protein folding, chaperones, protein degradation and quality control.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信