{"title":"使用 MHA-ResUNet 预测非小细胞肺癌患者的剂量分布。","authors":"Haifeng Zhang, Yanjun Yu, Fuli Zhang","doi":"10.1002/mp.17308","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>The current level of automation in the production of radiotherapy plans for lung cancer patients is relatively low. With the development of artificial intelligence, it has become a reality to use neural networks to predict dose distributions and provide assistance for radiation therapy planning. However, due to the significant individual variability in the distribution of non-small cell lung cancer (NSCLC) planning target volume (PTV) and the complex spatial relationships between the PTV and organs at risk (OARs), there is still a lack of a high-precision dose prediction network tailored to the characteristics of NSCLC.</p>\n </section>\n \n <section>\n \n <h3> Purpose</h3>\n \n <p>To assist in the development of volumetric modulated arc therapy (VMAT) plans for non-small cell lung cancer patients, a deep neural network is proposed to predict high-precision dose distribution.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>This study has developed a network called MHA-ResUNet, which combines a large-kernel dilated convolution module and multi-head attention (MHA) modules. The network was trained based on 80 VMAT plans of NSCLC patients. CT images, PTV, and OARs were fed into the independent input channel. The dose distribution was taken as the output to train the model. The performance of this network was compared with that of several commonly used networks, and the networks' performance was evaluated based on the voxel-level mean absolute error (MAE) within the PTV and OARs, as well as the error in clinical dose-volume metrics.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>The MAE between the predicted dose distribution and the manually planned dose distribution within the PTV is 1.43 Gy, and the D95 error is less than 1 Gy. Compared with the other three commonly used networks, the dose error of the MHA-ResUNet is the smallest in PTV and OARs.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>The proposed MHA-ResUNet network improves the receptive field and filters the shallow features to learn the relative spatial relation between the PTV and the OARs, enabling accurate prediction of dose distributions in NSCLC patients undergoing VMAT radiotherapy.</p>\n </section>\n </div>","PeriodicalId":18384,"journal":{"name":"Medical physics","volume":"51 10","pages":"7345-7355"},"PeriodicalIF":3.2000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of dose distributions for non-small cell lung cancer patients using MHA-ResUNet\",\"authors\":\"Haifeng Zhang, Yanjun Yu, Fuli Zhang\",\"doi\":\"10.1002/mp.17308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Background</h3>\\n \\n <p>The current level of automation in the production of radiotherapy plans for lung cancer patients is relatively low. With the development of artificial intelligence, it has become a reality to use neural networks to predict dose distributions and provide assistance for radiation therapy planning. However, due to the significant individual variability in the distribution of non-small cell lung cancer (NSCLC) planning target volume (PTV) and the complex spatial relationships between the PTV and organs at risk (OARs), there is still a lack of a high-precision dose prediction network tailored to the characteristics of NSCLC.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Purpose</h3>\\n \\n <p>To assist in the development of volumetric modulated arc therapy (VMAT) plans for non-small cell lung cancer patients, a deep neural network is proposed to predict high-precision dose distribution.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>This study has developed a network called MHA-ResUNet, which combines a large-kernel dilated convolution module and multi-head attention (MHA) modules. The network was trained based on 80 VMAT plans of NSCLC patients. CT images, PTV, and OARs were fed into the independent input channel. The dose distribution was taken as the output to train the model. The performance of this network was compared with that of several commonly used networks, and the networks' performance was evaluated based on the voxel-level mean absolute error (MAE) within the PTV and OARs, as well as the error in clinical dose-volume metrics.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>The MAE between the predicted dose distribution and the manually planned dose distribution within the PTV is 1.43 Gy, and the D95 error is less than 1 Gy. Compared with the other three commonly used networks, the dose error of the MHA-ResUNet is the smallest in PTV and OARs.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusions</h3>\\n \\n <p>The proposed MHA-ResUNet network improves the receptive field and filters the shallow features to learn the relative spatial relation between the PTV and the OARs, enabling accurate prediction of dose distributions in NSCLC patients undergoing VMAT radiotherapy.</p>\\n </section>\\n </div>\",\"PeriodicalId\":18384,\"journal\":{\"name\":\"Medical physics\",\"volume\":\"51 10\",\"pages\":\"7345-7355\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical physics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mp.17308\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical physics","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mp.17308","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Prediction of dose distributions for non-small cell lung cancer patients using MHA-ResUNet
Background
The current level of automation in the production of radiotherapy plans for lung cancer patients is relatively low. With the development of artificial intelligence, it has become a reality to use neural networks to predict dose distributions and provide assistance for radiation therapy planning. However, due to the significant individual variability in the distribution of non-small cell lung cancer (NSCLC) planning target volume (PTV) and the complex spatial relationships between the PTV and organs at risk (OARs), there is still a lack of a high-precision dose prediction network tailored to the characteristics of NSCLC.
Purpose
To assist in the development of volumetric modulated arc therapy (VMAT) plans for non-small cell lung cancer patients, a deep neural network is proposed to predict high-precision dose distribution.
Methods
This study has developed a network called MHA-ResUNet, which combines a large-kernel dilated convolution module and multi-head attention (MHA) modules. The network was trained based on 80 VMAT plans of NSCLC patients. CT images, PTV, and OARs were fed into the independent input channel. The dose distribution was taken as the output to train the model. The performance of this network was compared with that of several commonly used networks, and the networks' performance was evaluated based on the voxel-level mean absolute error (MAE) within the PTV and OARs, as well as the error in clinical dose-volume metrics.
Results
The MAE between the predicted dose distribution and the manually planned dose distribution within the PTV is 1.43 Gy, and the D95 error is less than 1 Gy. Compared with the other three commonly used networks, the dose error of the MHA-ResUNet is the smallest in PTV and OARs.
Conclusions
The proposed MHA-ResUNet network improves the receptive field and filters the shallow features to learn the relative spatial relation between the PTV and the OARs, enabling accurate prediction of dose distributions in NSCLC patients undergoing VMAT radiotherapy.
期刊介绍:
Medical Physics publishes original, high impact physics, imaging science, and engineering research that advances patient diagnosis and therapy through contributions in 1) Basic science developments with high potential for clinical translation 2) Clinical applications of cutting edge engineering and physics innovations 3) Broadly applicable and innovative clinical physics developments
Medical Physics is a journal of global scope and reach. By publishing in Medical Physics your research will reach an international, multidisciplinary audience including practicing medical physicists as well as physics- and engineering based translational scientists. We work closely with authors of promising articles to improve their quality.