{"title":"旁路移植物机械性能的比较:实验测试","authors":"Aisa Rassoli, Shirin Changizi, Alireza Behrouz Jazi, Paniz Ghorbani","doi":"10.1177/17085381241264309","DOIUrl":null,"url":null,"abstract":"<p><p>ObjectiveOne prevalent therapeutic strategy for addressing atherosclerosis is using an alternative blood supply route to the heart, referred to as bypass surgery. In these surgeries, the saphenous vein, radial artery, and internal mammary artery are commonly used to create this bypass route. Unfortunately, due to negligence regarding the compatibility of the graft with the host tissue, reoperation is often required after several years. One method that can aid in selecting a suitable vein for bypass is simulating the solid-fluid interaction, and performing such simulations requires knowledge of the mechanical properties of bypass grafts. Therefore, extracting the mechanical properties of bypass grafts is essential.MethodsIn this study, human bypass grafts were subjected to uniaxial tensile testing, and their elastic modulus was extracted and compared. Additionally, the hyperelastic properties of these grafts were extracted using the Mooney-Rivlin model for use in numerical software.ResultsThe average elastic modulus in the circumferential direction for radial artery, mammary artery, and saphenous vein samples were determined to be 1.384 ± 0.268 MPa, 3.108 ± 1.652 MPa, and 7.912 ± 2.509 MPa, respectively. Based on the results of uniaxial tests, the saphenous vein exhibited the highest stiffness among the three vascular tissues.ConclusionThe mechanical characterization results of the bypass vessels can be applied to the clinical studies of heart diseases. They may help develop an appropriate treatment approach.</p>","PeriodicalId":23549,"journal":{"name":"Vascular","volume":" ","pages":"956-961"},"PeriodicalIF":0.9000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of the mechanical properties of bypass grafts: Experimental assays.\",\"authors\":\"Aisa Rassoli, Shirin Changizi, Alireza Behrouz Jazi, Paniz Ghorbani\",\"doi\":\"10.1177/17085381241264309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>ObjectiveOne prevalent therapeutic strategy for addressing atherosclerosis is using an alternative blood supply route to the heart, referred to as bypass surgery. In these surgeries, the saphenous vein, radial artery, and internal mammary artery are commonly used to create this bypass route. Unfortunately, due to negligence regarding the compatibility of the graft with the host tissue, reoperation is often required after several years. One method that can aid in selecting a suitable vein for bypass is simulating the solid-fluid interaction, and performing such simulations requires knowledge of the mechanical properties of bypass grafts. Therefore, extracting the mechanical properties of bypass grafts is essential.MethodsIn this study, human bypass grafts were subjected to uniaxial tensile testing, and their elastic modulus was extracted and compared. Additionally, the hyperelastic properties of these grafts were extracted using the Mooney-Rivlin model for use in numerical software.ResultsThe average elastic modulus in the circumferential direction for radial artery, mammary artery, and saphenous vein samples were determined to be 1.384 ± 0.268 MPa, 3.108 ± 1.652 MPa, and 7.912 ± 2.509 MPa, respectively. Based on the results of uniaxial tests, the saphenous vein exhibited the highest stiffness among the three vascular tissues.ConclusionThe mechanical characterization results of the bypass vessels can be applied to the clinical studies of heart diseases. They may help develop an appropriate treatment approach.</p>\",\"PeriodicalId\":23549,\"journal\":{\"name\":\"Vascular\",\"volume\":\" \",\"pages\":\"956-961\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vascular\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/17085381241264309\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"PERIPHERAL VASCULAR DISEASE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vascular","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/17085381241264309","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/19 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"PERIPHERAL VASCULAR DISEASE","Score":null,"Total":0}
Comparison of the mechanical properties of bypass grafts: Experimental assays.
ObjectiveOne prevalent therapeutic strategy for addressing atherosclerosis is using an alternative blood supply route to the heart, referred to as bypass surgery. In these surgeries, the saphenous vein, radial artery, and internal mammary artery are commonly used to create this bypass route. Unfortunately, due to negligence regarding the compatibility of the graft with the host tissue, reoperation is often required after several years. One method that can aid in selecting a suitable vein for bypass is simulating the solid-fluid interaction, and performing such simulations requires knowledge of the mechanical properties of bypass grafts. Therefore, extracting the mechanical properties of bypass grafts is essential.MethodsIn this study, human bypass grafts were subjected to uniaxial tensile testing, and their elastic modulus was extracted and compared. Additionally, the hyperelastic properties of these grafts were extracted using the Mooney-Rivlin model for use in numerical software.ResultsThe average elastic modulus in the circumferential direction for radial artery, mammary artery, and saphenous vein samples were determined to be 1.384 ± 0.268 MPa, 3.108 ± 1.652 MPa, and 7.912 ± 2.509 MPa, respectively. Based on the results of uniaxial tests, the saphenous vein exhibited the highest stiffness among the three vascular tissues.ConclusionThe mechanical characterization results of the bypass vessels can be applied to the clinical studies of heart diseases. They may help develop an appropriate treatment approach.
期刊介绍:
Vascular provides readers with new and unusual up-to-date articles and case reports focusing on vascular and endovascular topics. It is a highly international forum for the discussion and debate of all aspects of this distinct surgical specialty. It also features opinion pieces, literature reviews and controversial issues presented from various points of view.