Kshitiz Parihar, Seung-Hyun Ko, Ryan Bradley, Phillip Taylor, N Ramakrishnan, Tobias Baumgart, Wei Guo, Valerie M Weaver, Paul A Janmey, Ravi Radhakrishnan
{"title":"膜形态转化的自由能计算以及对物理生物学和肿瘤学的启示。","authors":"Kshitiz Parihar, Seung-Hyun Ko, Ryan Bradley, Phillip Taylor, N Ramakrishnan, Tobias Baumgart, Wei Guo, Valerie M Weaver, Paul A Janmey, Ravi Radhakrishnan","doi":"10.1016/bs.mie.2024.03.028","DOIUrl":null,"url":null,"abstract":"<p><p>In this chapter, we aim to bridge basic molecular and cellular principles surrounding membrane curvature generation with rewiring of cellular signals in cancer through multiscale models. We describe a general framework that integrates signaling with other cellular functions like trafficking, cell-cell and cell-matrix adhesion, and motility. The guiding question in our approach is: how does a physical change in cell membrane configuration caused by external stimuli (including those by the extracellular microenvironment) alter trafficking, signaling and subsequent cell fate? We answer this question by constructing a modeling framework based on stochastic spatial continuum models of cell membrane deformations. We apply this framework to explore the link between trafficking, signaling in the tumor microenvironment, and cell fate. At each stage, we aim to connect the results of our predictions with cellular experiments.</p>","PeriodicalId":18662,"journal":{"name":"Methods in enzymology","volume":"701 ","pages":"359-386"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11258396/pdf/","citationCount":"0","resultStr":"{\"title\":\"Free energy calculations for membrane morphological transformations and insights to physical biology and oncology.\",\"authors\":\"Kshitiz Parihar, Seung-Hyun Ko, Ryan Bradley, Phillip Taylor, N Ramakrishnan, Tobias Baumgart, Wei Guo, Valerie M Weaver, Paul A Janmey, Ravi Radhakrishnan\",\"doi\":\"10.1016/bs.mie.2024.03.028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this chapter, we aim to bridge basic molecular and cellular principles surrounding membrane curvature generation with rewiring of cellular signals in cancer through multiscale models. We describe a general framework that integrates signaling with other cellular functions like trafficking, cell-cell and cell-matrix adhesion, and motility. The guiding question in our approach is: how does a physical change in cell membrane configuration caused by external stimuli (including those by the extracellular microenvironment) alter trafficking, signaling and subsequent cell fate? We answer this question by constructing a modeling framework based on stochastic spatial continuum models of cell membrane deformations. We apply this framework to explore the link between trafficking, signaling in the tumor microenvironment, and cell fate. At each stage, we aim to connect the results of our predictions with cellular experiments.</p>\",\"PeriodicalId\":18662,\"journal\":{\"name\":\"Methods in enzymology\",\"volume\":\"701 \",\"pages\":\"359-386\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11258396/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods in enzymology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/bs.mie.2024.03.028\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/4/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in enzymology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.mie.2024.03.028","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/14 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Free energy calculations for membrane morphological transformations and insights to physical biology and oncology.
In this chapter, we aim to bridge basic molecular and cellular principles surrounding membrane curvature generation with rewiring of cellular signals in cancer through multiscale models. We describe a general framework that integrates signaling with other cellular functions like trafficking, cell-cell and cell-matrix adhesion, and motility. The guiding question in our approach is: how does a physical change in cell membrane configuration caused by external stimuli (including those by the extracellular microenvironment) alter trafficking, signaling and subsequent cell fate? We answer this question by constructing a modeling framework based on stochastic spatial continuum models of cell membrane deformations. We apply this framework to explore the link between trafficking, signaling in the tumor microenvironment, and cell fate. At each stage, we aim to connect the results of our predictions with cellular experiments.
期刊介绍:
The critically acclaimed laboratory standard for almost 50 years, Methods in Enzymology is one of the most highly respected publications in the field of biochemistry. Each volume is eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. Now with over 500 volumes the series contains much material still relevant today and is truly an essential publication for researchers in all fields of life sciences, including microbiology, biochemistry, cancer research and genetics-just to name a few. Five of the 2013 Nobel Laureates have edited or contributed to volumes of MIE.