利用机器学习方法的比较分析进行卡纳特放电预测

IF 2.7 4区 地球科学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Saeideh Samani, Meysam Vadiati, Ozgur Kisi, Leyla Ghasemi, Reza Farajzadeh
{"title":"利用机器学习方法的比较分析进行卡纳特放电预测","authors":"Saeideh Samani, Meysam Vadiati, Ozgur Kisi, Leyla Ghasemi, Reza Farajzadeh","doi":"10.1007/s12145-024-01409-0","DOIUrl":null,"url":null,"abstract":"<p>The Qanat (also known as kariz) is one of the significant water resources in many arid and semiarid regions. The present research aims to use machine learning techniques for Qanat discharge (QD) prediction and find a practical model that predicts QD well. Gene expression programming (GEP), artificial neural network (ANN), group method of data handling (GMDH), least-square support vector machine (LSSVM) and adaptive neuro-fuzzy inference system (ANFIS), are employed to predict one-, two-, and five-months time-step ahead QD in an unconfined aquifer. QD for one, two, and three lag-times (QD<sub>t−1</sub>, QD<sub>t−2</sub>, QD<sub>t−3</sub>), QD for adjacent Qanat, the main meteorological components (T<sub>t</sub>, ET<sub>t</sub>, P<sub>t</sub>) and GWL for one, two, and three lag-times are utilized as input dataset to accomplish accurate QD prediction. The GMDH model, according to its best results, had promising accuracy in predicting multi-step ahead monthly QD, followed by the LSSVM, ANFIS, ANN and GEP, respectively.</p>","PeriodicalId":49318,"journal":{"name":"Earth Science Informatics","volume":"39 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Qanat discharge prediction using a comparative analysis of machine learning methods\",\"authors\":\"Saeideh Samani, Meysam Vadiati, Ozgur Kisi, Leyla Ghasemi, Reza Farajzadeh\",\"doi\":\"10.1007/s12145-024-01409-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Qanat (also known as kariz) is one of the significant water resources in many arid and semiarid regions. The present research aims to use machine learning techniques for Qanat discharge (QD) prediction and find a practical model that predicts QD well. Gene expression programming (GEP), artificial neural network (ANN), group method of data handling (GMDH), least-square support vector machine (LSSVM) and adaptive neuro-fuzzy inference system (ANFIS), are employed to predict one-, two-, and five-months time-step ahead QD in an unconfined aquifer. QD for one, two, and three lag-times (QD<sub>t−1</sub>, QD<sub>t−2</sub>, QD<sub>t−3</sub>), QD for adjacent Qanat, the main meteorological components (T<sub>t</sub>, ET<sub>t</sub>, P<sub>t</sub>) and GWL for one, two, and three lag-times are utilized as input dataset to accomplish accurate QD prediction. The GMDH model, according to its best results, had promising accuracy in predicting multi-step ahead monthly QD, followed by the LSSVM, ANFIS, ANN and GEP, respectively.</p>\",\"PeriodicalId\":49318,\"journal\":{\"name\":\"Earth Science Informatics\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth Science Informatics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s12145-024-01409-0\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth Science Informatics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s12145-024-01409-0","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

卡纳特(又称卡里孜)是许多干旱和半干旱地区的重要水资源之一。本研究旨在利用机器学习技术进行卡纳特排水量(QD)预测,并找到一种能够很好预测 QD 的实用模型。研究采用了基因表达编程(GEP)、人工神经网络(ANN)、分组数据处理方法(GMDH)、最小平方支持向量机(LSSVM)和自适应神经模糊推理系统(ANFIS)来预测无压含水层中提前一个月、两个月和五个月时间步长的 QD。利用一、二、三个滞后期(QDt-1、QDt-2、QDt-3)的 QD、相邻 Qanat 的 QD、主要气象成分(Tt、ETt、Pt)以及一、二、三个滞后期的 GWL 作为输入数据集,以完成准确的 QD 预测。根据其最佳结果,GMDH 模型在预测多步超前月度 QD 方面具有良好的准确性,其次分别是 LSSVM、ANFIS、ANN 和 GEP。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Qanat discharge prediction using a comparative analysis of machine learning methods

Qanat discharge prediction using a comparative analysis of machine learning methods

The Qanat (also known as kariz) is one of the significant water resources in many arid and semiarid regions. The present research aims to use machine learning techniques for Qanat discharge (QD) prediction and find a practical model that predicts QD well. Gene expression programming (GEP), artificial neural network (ANN), group method of data handling (GMDH), least-square support vector machine (LSSVM) and adaptive neuro-fuzzy inference system (ANFIS), are employed to predict one-, two-, and five-months time-step ahead QD in an unconfined aquifer. QD for one, two, and three lag-times (QDt−1, QDt−2, QDt−3), QD for adjacent Qanat, the main meteorological components (Tt, ETt, Pt) and GWL for one, two, and three lag-times are utilized as input dataset to accomplish accurate QD prediction. The GMDH model, according to its best results, had promising accuracy in predicting multi-step ahead monthly QD, followed by the LSSVM, ANFIS, ANN and GEP, respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Earth Science Informatics
Earth Science Informatics COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-GEOSCIENCES, MULTIDISCIPLINARY
CiteScore
4.60
自引率
3.60%
发文量
157
审稿时长
4.3 months
期刊介绍: The Earth Science Informatics [ESIN] journal aims at rapid publication of high-quality, current, cutting-edge, and provocative scientific work in the area of Earth Science Informatics as it relates to Earth systems science and space science. This includes articles on the application of formal and computational methods, computational Earth science, spatial and temporal analyses, and all aspects of computer applications to the acquisition, storage, processing, interchange, and visualization of data and information about the materials, properties, processes, features, and phenomena that occur at all scales and locations in the Earth system’s five components (atmosphere, hydrosphere, geosphere, biosphere, cryosphere) and in space (see "About this journal" for more detail). The quarterly journal publishes research, methodology, and software articles, as well as editorials, comments, and book and software reviews. Review articles of relevant findings, topics, and methodologies are also considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信