通过赫格洛茨表示法确定有限位移的特征

Francisco J. Cruz-Zamorano
{"title":"通过赫格洛茨表示法确定有限位移的特征","authors":"Francisco J. Cruz-Zamorano","doi":"arxiv-2407.10664","DOIUrl":null,"url":null,"abstract":"A complete characterization of parabolic self-maps of finite shift is given\nin terms of their Herglotz's representation. This improves a previous result\ndue to Contreras, D\\'iaz-Madrigal, and Pommerenke. We also derive some\nconsequences for the rate of convergence of these functions to their\nDenjoy-Wolff point, improving a related result of Kourou, Theodosiadis, and\nZarvalis for the continuous setting.","PeriodicalId":501142,"journal":{"name":"arXiv - MATH - Complex Variables","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of finite shift via Herglotz's representation\",\"authors\":\"Francisco J. Cruz-Zamorano\",\"doi\":\"arxiv-2407.10664\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A complete characterization of parabolic self-maps of finite shift is given\\nin terms of their Herglotz's representation. This improves a previous result\\ndue to Contreras, D\\\\'iaz-Madrigal, and Pommerenke. We also derive some\\nconsequences for the rate of convergence of these functions to their\\nDenjoy-Wolff point, improving a related result of Kourou, Theodosiadis, and\\nZarvalis for the continuous setting.\",\"PeriodicalId\":501142,\"journal\":{\"name\":\"arXiv - MATH - Complex Variables\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Complex Variables\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.10664\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Complex Variables","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.10664","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了有限位移抛物线自映射的赫尔格洛茨表示的完整特征。这改进了康特雷拉斯、德西亚兹-马德里加尔和庞梅伦克之前的结果。我们还推导出了这些函数向其登喜路-沃尔夫点收敛的速率,从而改进了库鲁、西奥多西阿迪斯和扎尔瓦里斯在连续环境下的相关结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterization of finite shift via Herglotz's representation
A complete characterization of parabolic self-maps of finite shift is given in terms of their Herglotz's representation. This improves a previous result due to Contreras, D\'iaz-Madrigal, and Pommerenke. We also derive some consequences for the rate of convergence of these functions to their Denjoy-Wolff point, improving a related result of Kourou, Theodosiadis, and Zarvalis for the continuous setting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信