{"title":"弦弧域上的德里赫特空间","authors":"Huaying Wei, Michel Zinsmeister","doi":"arxiv-2407.11577","DOIUrl":null,"url":null,"abstract":"If $U$ is a $C^{\\infty}$ function with compact support in the plane, we let\n$u$ be its restriction to the unit circle $\\mathbb{S}$, and denote by\n$U_i,\\,U_e$ the harmonic extensions of $u$ respectively in the interior and the\nexterior of $\\mathbb S$ on the Riemann sphere. About a hundred years ago,\nDouglas has shown that \\begin{align*} \\iint_{\\mathbb{D}}|\\nabla U_i|^2(z)dxdy&=\n\\iint_{\\bar{\\mathbb{C}}\\backslash\\bar{\\mathbb{D}}}|\\nabla U_e|^2(z)dxdy &= \\frac{1}{2\\pi}\\iint_{\\mathbb S\\times\\mathbb\nS}\\left|\\frac{u(z_1)-u(z_2)}{z_1-z_2}\\right|^2|dz_1||dz_2|, \\end{align*} thus\ngiving three ways to express the Dirichlet norm of $u$. On a rectifiable Jordan\ncurve $\\Gamma$ we have obvious analogues of these three expressions, which will\nof course not be equal in general. The main goal of this paper is to show that\nthese $3$ (semi-)norms are equivalent if and only if $\\Gamma$ is a chord-arc\ncurve.","PeriodicalId":501142,"journal":{"name":"arXiv - MATH - Complex Variables","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dirichlet spaces over chord-arc domains\",\"authors\":\"Huaying Wei, Michel Zinsmeister\",\"doi\":\"arxiv-2407.11577\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"If $U$ is a $C^{\\\\infty}$ function with compact support in the plane, we let\\n$u$ be its restriction to the unit circle $\\\\mathbb{S}$, and denote by\\n$U_i,\\\\,U_e$ the harmonic extensions of $u$ respectively in the interior and the\\nexterior of $\\\\mathbb S$ on the Riemann sphere. About a hundred years ago,\\nDouglas has shown that \\\\begin{align*} \\\\iint_{\\\\mathbb{D}}|\\\\nabla U_i|^2(z)dxdy&=\\n\\\\iint_{\\\\bar{\\\\mathbb{C}}\\\\backslash\\\\bar{\\\\mathbb{D}}}|\\\\nabla U_e|^2(z)dxdy &= \\\\frac{1}{2\\\\pi}\\\\iint_{\\\\mathbb S\\\\times\\\\mathbb\\nS}\\\\left|\\\\frac{u(z_1)-u(z_2)}{z_1-z_2}\\\\right|^2|dz_1||dz_2|, \\\\end{align*} thus\\ngiving three ways to express the Dirichlet norm of $u$. On a rectifiable Jordan\\ncurve $\\\\Gamma$ we have obvious analogues of these three expressions, which will\\nof course not be equal in general. The main goal of this paper is to show that\\nthese $3$ (semi-)norms are equivalent if and only if $\\\\Gamma$ is a chord-arc\\ncurve.\",\"PeriodicalId\":501142,\"journal\":{\"name\":\"arXiv - MATH - Complex Variables\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Complex Variables\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.11577\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Complex Variables","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.11577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
If $U$ is a $C^{\infty}$ function with compact support in the plane, we let
$u$ be its restriction to the unit circle $\mathbb{S}$, and denote by
$U_i,\,U_e$ the harmonic extensions of $u$ respectively in the interior and the
exterior of $\mathbb S$ on the Riemann sphere. About a hundred years ago,
Douglas has shown that \begin{align*} \iint_{\mathbb{D}}|\nabla U_i|^2(z)dxdy&=
\iint_{\bar{\mathbb{C}}\backslash\bar{\mathbb{D}}}|\nabla U_e|^2(z)dxdy &= \frac{1}{2\pi}\iint_{\mathbb S\times\mathbb
S}\left|\frac{u(z_1)-u(z_2)}{z_1-z_2}\right|^2|dz_1||dz_2|, \end{align*} thus
giving three ways to express the Dirichlet norm of $u$. On a rectifiable Jordan
curve $\Gamma$ we have obvious analogues of these three expressions, which will
of course not be equal in general. The main goal of this paper is to show that
these $3$ (semi-)norms are equivalent if and only if $\Gamma$ is a chord-arc
curve.