颅内出血的固定 CT 图像与弥散后取样重建技术

Alejandro Lopez-Montes, Thomas McSkimming, Anthony Skeats, Chris Delnooz, Brian Gonzales, Wojciech Zbijewski, Alejandro Sisniega
{"title":"颅内出血的固定 CT 图像与弥散后取样重建技术","authors":"Alejandro Lopez-Montes, Thomas McSkimming, Anthony Skeats, Chris Delnooz, Brian Gonzales, Wojciech Zbijewski, Alejandro Sisniega","doi":"arxiv-2407.11196","DOIUrl":null,"url":null,"abstract":"Diffusion Posterior Sampling (DPS) can be used in Computed Tomography (CT)\nreconstruction by leveraging diffusion-based generative models for\nunconditional image synthesis while matching the observations (data) of a CT\nscan. Of particular interest is its application in scenarios involving sparse\nor limited angular sampling, where conventional reconstruction algorithms are\noften insufficient. We developed a DPS algorithm for 3D reconstruction from a\nstationary CT (sCT) portable brain stroke imaging unit based on a multi-x-ray\nsource array (MXA) of 31 x-ray tubes and a curved area detector. In this\nconfiguration, conventional reconstruction e.g., Penalized Weighted Least\nSquares (PWLS) with a Huber edge-preserving penalty, suffers from severe\ndirectional undersampling artifacts. The proposed DPS integrates a\ntwo-dimensional diffusion model, acting on image slices, coupled to sCT data\nconsistency and volumetric regularization terms to enable 3D reconstruction\nrobust to noise and incomplete sampling. To reduce the computational burden of\nDPS, stochastic contraction with PWLS initialization was used to decrease the\nnumber of diffusion steps. The validation studies involved simulations of\nanthropomorphic brain phantoms with synthetic bleeds and experimental data from\nan sCT bench. In simulations, DPS achieved ~130% reduction of directional\nartifacts compared to PWLS and 30% better recovery of lesion shape (DICE\ncoefficient). Benchtop studies demonstrated enhanced visualization of brain\nfeatures in a Kyoto Kagaku head phantom. The proposed DPS achieved improved\nvisualization of intracranial hemorrhage and brain morphology compared to\nconventional model-based reconstruction for the highly undersampled sCT system.","PeriodicalId":501378,"journal":{"name":"arXiv - PHYS - Medical Physics","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stationary CT Imaging of Intracranial Hemorrhage with Diffusion Posterior Sampling Reconstruction\",\"authors\":\"Alejandro Lopez-Montes, Thomas McSkimming, Anthony Skeats, Chris Delnooz, Brian Gonzales, Wojciech Zbijewski, Alejandro Sisniega\",\"doi\":\"arxiv-2407.11196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diffusion Posterior Sampling (DPS) can be used in Computed Tomography (CT)\\nreconstruction by leveraging diffusion-based generative models for\\nunconditional image synthesis while matching the observations (data) of a CT\\nscan. Of particular interest is its application in scenarios involving sparse\\nor limited angular sampling, where conventional reconstruction algorithms are\\noften insufficient. We developed a DPS algorithm for 3D reconstruction from a\\nstationary CT (sCT) portable brain stroke imaging unit based on a multi-x-ray\\nsource array (MXA) of 31 x-ray tubes and a curved area detector. In this\\nconfiguration, conventional reconstruction e.g., Penalized Weighted Least\\nSquares (PWLS) with a Huber edge-preserving penalty, suffers from severe\\ndirectional undersampling artifacts. The proposed DPS integrates a\\ntwo-dimensional diffusion model, acting on image slices, coupled to sCT data\\nconsistency and volumetric regularization terms to enable 3D reconstruction\\nrobust to noise and incomplete sampling. To reduce the computational burden of\\nDPS, stochastic contraction with PWLS initialization was used to decrease the\\nnumber of diffusion steps. The validation studies involved simulations of\\nanthropomorphic brain phantoms with synthetic bleeds and experimental data from\\nan sCT bench. In simulations, DPS achieved ~130% reduction of directional\\nartifacts compared to PWLS and 30% better recovery of lesion shape (DICE\\ncoefficient). Benchtop studies demonstrated enhanced visualization of brain\\nfeatures in a Kyoto Kagaku head phantom. The proposed DPS achieved improved\\nvisualization of intracranial hemorrhage and brain morphology compared to\\nconventional model-based reconstruction for the highly undersampled sCT system.\",\"PeriodicalId\":501378,\"journal\":{\"name\":\"arXiv - PHYS - Medical Physics\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Medical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.11196\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Medical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.11196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

扩散后向采样(DPS)可用于计算机断层扫描(CT)重建,它利用基于扩散的生成模型进行无条件图像合成,同时与 CT 扫描的观测数据(数据)相匹配。特别令人感兴趣的是它在涉及稀疏或有限角度采样场景中的应用,在这些场景中,传统的重建算法往往是不够的。我们开发了一种 DPS 算法,用于基于 31 个 X 射线管组成的多 X 射线源阵列(MXA)和曲面探测器的静态 CT(sCT)便携式脑卒中成像装置的三维重建。在这种配置下,传统的重建方法,如带有胡贝尔边缘保留惩罚的惩罚性加权最小二乘法(PWLS),会出现严重的定向采样不足伪影。所提出的 DPS 整合了作用于图像切片的二维扩散模型,并结合了 sCT 数据一致性和容积正则化条款,使三维重建不受噪声和不完全采样的影响。为了减轻 DPS 的计算负担,采用了 PWLS 初始化的随机收缩来减少扩散步骤的数量。验证研究包括对具有合成出血的人脑模型的模拟和来自 sCT 工作台的实验数据。在模拟中,与 PWLS 相比,DPS 的方向伪影减少了约 130%,病变形状恢复能力提高了 30%(DICE 系数)。台式研究表明,在 Kyoto Kagaku 头部模型中增强了脑特征的可视化。在高度采样不足的 sCT 系统中,与传统的基于模型的重建相比,所提出的 DPS 改善了颅内出血和脑形态的可视化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stationary CT Imaging of Intracranial Hemorrhage with Diffusion Posterior Sampling Reconstruction
Diffusion Posterior Sampling (DPS) can be used in Computed Tomography (CT) reconstruction by leveraging diffusion-based generative models for unconditional image synthesis while matching the observations (data) of a CT scan. Of particular interest is its application in scenarios involving sparse or limited angular sampling, where conventional reconstruction algorithms are often insufficient. We developed a DPS algorithm for 3D reconstruction from a stationary CT (sCT) portable brain stroke imaging unit based on a multi-x-ray source array (MXA) of 31 x-ray tubes and a curved area detector. In this configuration, conventional reconstruction e.g., Penalized Weighted Least Squares (PWLS) with a Huber edge-preserving penalty, suffers from severe directional undersampling artifacts. The proposed DPS integrates a two-dimensional diffusion model, acting on image slices, coupled to sCT data consistency and volumetric regularization terms to enable 3D reconstruction robust to noise and incomplete sampling. To reduce the computational burden of DPS, stochastic contraction with PWLS initialization was used to decrease the number of diffusion steps. The validation studies involved simulations of anthropomorphic brain phantoms with synthetic bleeds and experimental data from an sCT bench. In simulations, DPS achieved ~130% reduction of directional artifacts compared to PWLS and 30% better recovery of lesion shape (DICE coefficient). Benchtop studies demonstrated enhanced visualization of brain features in a Kyoto Kagaku head phantom. The proposed DPS achieved improved visualization of intracranial hemorrhage and brain morphology compared to conventional model-based reconstruction for the highly undersampled sCT system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信