具有正则耗散函数的静态 Navier-Stokes-Boussinesq 系统

IF 0.6 4区 数学 Q3 MATHEMATICS
E. S. Baranovskii
{"title":"具有正则耗散函数的静态 Navier-Stokes-Boussinesq 系统","authors":"E. S. Baranovskii","doi":"10.1134/s0001434624050031","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p> We study a boundary value problem for a mathematical model describing the nonisothermal steady-state flow of a viscous fluid in a 3D (or 2D) bounded domain with locally Lipschitz boundary. The heat and mass transfer model considered here has the feature that a regularized Rayleigh dissipation function is used in the energy balance equation. This permits taking into account the energy dissipation due to the viscous friction effect. A theorem on the existence of a weak solution is proved under natural assumptions on the model data. Moreover, we establish extra conditions guaranteeing that the weak solution is unique and/or strong. </p>","PeriodicalId":18294,"journal":{"name":"Mathematical Notes","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Stationary Navier–Stokes–Boussinesq System with a Regularized Dissipation Function\",\"authors\":\"E. S. Baranovskii\",\"doi\":\"10.1134/s0001434624050031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p> We study a boundary value problem for a mathematical model describing the nonisothermal steady-state flow of a viscous fluid in a 3D (or 2D) bounded domain with locally Lipschitz boundary. The heat and mass transfer model considered here has the feature that a regularized Rayleigh dissipation function is used in the energy balance equation. This permits taking into account the energy dissipation due to the viscous friction effect. A theorem on the existence of a weak solution is proved under natural assumptions on the model data. Moreover, we establish extra conditions guaranteeing that the weak solution is unique and/or strong. </p>\",\"PeriodicalId\":18294,\"journal\":{\"name\":\"Mathematical Notes\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Notes\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s0001434624050031\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Notes","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0001434624050031","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 我们研究了一个数学模型的边界值问题,该数学模型描述了粘性流体在具有局部 Lipschitz 边界的三维(或二维)有界域中的非等温稳态流动。这里考虑的传热和传质模型的特点是在能量平衡方程中使用了正则化的瑞利耗散函数。这样就可以将粘性摩擦效应引起的能量耗散考虑在内。在模型数据的自然假设下,证明了弱解存在的定理。此外,我们还建立了额外的条件,保证弱解是唯一的和/或强的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Stationary Navier–Stokes–Boussinesq System with a Regularized Dissipation Function

Abstract

We study a boundary value problem for a mathematical model describing the nonisothermal steady-state flow of a viscous fluid in a 3D (or 2D) bounded domain with locally Lipschitz boundary. The heat and mass transfer model considered here has the feature that a regularized Rayleigh dissipation function is used in the energy balance equation. This permits taking into account the energy dissipation due to the viscous friction effect. A theorem on the existence of a weak solution is proved under natural assumptions on the model data. Moreover, we establish extra conditions guaranteeing that the weak solution is unique and/or strong.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Notes
Mathematical Notes 数学-数学
CiteScore
0.90
自引率
16.70%
发文量
179
审稿时长
24 months
期刊介绍: Mathematical Notes is a journal that publishes research papers and review articles in modern algebra, geometry and number theory, functional analysis, logic, set and measure theory, topology, probability and stochastics, differential and noncommutative geometry, operator and group theory, asymptotic and approximation methods, mathematical finance, linear and nonlinear equations, ergodic and spectral theory, operator algebras, and other related theoretical fields. It also presents rigorous results in mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信