一维简单随机游走无限频繁地出现三个喜欢的边缘

IF 1.1 4区 数学 Q1 MATHEMATICS
Chen-Xu Hao, Ze-Chun Hu, Ting Ma, Renming Song
{"title":"一维简单随机游走无限频繁地出现三个喜欢的边缘","authors":"Chen-Xu Hao, Ze-Chun Hu, Ting Ma, Renming Song","doi":"10.1007/s40304-023-00382-2","DOIUrl":null,"url":null,"abstract":"<p>For a one-dimensional simple symmetric random walk <span>\\((S_n)\\)</span>, an edge <i>x</i> (between points <span>\\(x-1\\)</span> and <i>x</i>) is called a favorite edge at time <i>n</i> if its local time at <i>n</i> achieves the maximum among all edges. In this paper, we show that with probability 1 three favorite edges occurs infinitely often. Our work is inspired by Tóth and Werner (Comb Probab Comput 6:359–369, 1997), and Ding and Shen (Ann Probab 46:2545–2561, 2018), disproves a conjecture mentioned in Remark 1 on page 368 of Tóth and Werner (1997).</p>","PeriodicalId":10575,"journal":{"name":"Communications in Mathematics and Statistics","volume":"34 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Three Favorite Edges Occurs Infinitely Often for One-Dimensional Simple Random Walk\",\"authors\":\"Chen-Xu Hao, Ze-Chun Hu, Ting Ma, Renming Song\",\"doi\":\"10.1007/s40304-023-00382-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For a one-dimensional simple symmetric random walk <span>\\\\((S_n)\\\\)</span>, an edge <i>x</i> (between points <span>\\\\(x-1\\\\)</span> and <i>x</i>) is called a favorite edge at time <i>n</i> if its local time at <i>n</i> achieves the maximum among all edges. In this paper, we show that with probability 1 three favorite edges occurs infinitely often. Our work is inspired by Tóth and Werner (Comb Probab Comput 6:359–369, 1997), and Ding and Shen (Ann Probab 46:2545–2561, 2018), disproves a conjecture mentioned in Remark 1 on page 368 of Tóth and Werner (1997).</p>\",\"PeriodicalId\":10575,\"journal\":{\"name\":\"Communications in Mathematics and Statistics\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematics and Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s40304-023-00382-2\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematics and Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40304-023-00382-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于一维简单对称随机游走((S_n)\),如果一条边 x(在点 \(x-1\) 和 x 之间)在 n 时刻的局部时间在所有边中达到最大,那么这条边 x 在 n 时刻被称为最爱边。在本文中,我们证明了在概率为 1 的情况下,三条最喜欢的边会无限频繁地出现。我们的工作受到 Tóth 和 Werner(Comb Probab Comput 6:359-369, 1997)以及 Ding 和 Shen(Ann Probab 46:2545-2561, 2018)的启发,推翻了 Tóth 和 Werner(1997)第 368 页备注 1 中提到的一个猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Three Favorite Edges Occurs Infinitely Often for One-Dimensional Simple Random Walk

For a one-dimensional simple symmetric random walk \((S_n)\), an edge x (between points \(x-1\) and x) is called a favorite edge at time n if its local time at n achieves the maximum among all edges. In this paper, we show that with probability 1 three favorite edges occurs infinitely often. Our work is inspired by Tóth and Werner (Comb Probab Comput 6:359–369, 1997), and Ding and Shen (Ann Probab 46:2545–2561, 2018), disproves a conjecture mentioned in Remark 1 on page 368 of Tóth and Werner (1997).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Mathematics and Statistics
Communications in Mathematics and Statistics Mathematics-Statistics and Probability
CiteScore
1.80
自引率
0.00%
发文量
36
期刊介绍: Communications in Mathematics and Statistics is an international journal published by Springer-Verlag in collaboration with the School of Mathematical Sciences, University of Science and Technology of China (USTC). The journal will be committed to publish high level original peer reviewed research papers in various areas of mathematical sciences, including pure mathematics, applied mathematics, computational mathematics, and probability and statistics. Typically one volume is published each year, and each volume consists of four issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信